| Step | Hyp | Ref
| Expression |
| 1 | | incom 3805 |
. . 3
⊢ ((𝐹‘𝐽) ∩ (𝐹‘𝐾)) = ((𝐹‘𝐾) ∩ (𝐹‘𝐽)) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → ((𝐹‘𝐽) ∩ (𝐹‘𝐾)) = ((𝐹‘𝐾) ∩ (𝐹‘𝐽))) |
| 3 | | simpl 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → 𝜑) |
| 4 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → 𝑥 ∈ (𝐹‘𝐾)) |
| 5 | | iundjiunlem.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ 𝑍) |
| 6 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐾 → (𝐸‘𝑛) = (𝐸‘𝐾)) |
| 7 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝐾 → (𝑁..^𝑛) = (𝑁..^𝐾)) |
| 8 | 7 | iuneq1d 4545 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐾 → ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖)) |
| 9 | 6, 8 | difeq12d 3729 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐾 → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) = ((𝐸‘𝐾) ∖ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖))) |
| 10 | | iundjiunlem.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
| 11 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢ (𝐸‘𝐾) ∈ V |
| 12 | | difexg 4808 |
. . . . . . . . . . . . 13
⊢ ((𝐸‘𝐾) ∈ V → ((𝐸‘𝐾) ∖ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖)) ∈ V) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝐸‘𝐾) ∖ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖)) ∈ V |
| 14 | 9, 10, 13 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ 𝑍 → (𝐹‘𝐾) = ((𝐸‘𝐾) ∖ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖))) |
| 15 | 5, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝐾) = ((𝐸‘𝐾) ∖ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖))) |
| 16 | 3, 15 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → (𝐹‘𝐾) = ((𝐸‘𝐾) ∖ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖))) |
| 17 | 4, 16 | eleqtrd 2703 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → 𝑥 ∈ ((𝐸‘𝐾) ∖ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖))) |
| 18 | | eldifn 3733 |
. . . . . . . 8
⊢ (𝑥 ∈ ((𝐸‘𝐾) ∖ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖)) → ¬ 𝑥 ∈ ∪
𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖)) |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → ¬ 𝑥 ∈ ∪
𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖)) |
| 20 | | iundjiunlem.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ 𝑍) |
| 21 | | iundjiunlem.z |
. . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ≥‘𝑁) |
| 22 | 20, 21 | syl6eleq 2711 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (ℤ≥‘𝑁)) |
| 23 | 21 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 = (ℤ≥‘𝑁)) |
| 24 | 5, 23 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) |
| 25 | | eluzelz 11697 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈
(ℤ≥‘𝑁) → 𝐾 ∈ ℤ) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 27 | | iundjiunlem.lt |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 < 𝐾) |
| 28 | 22, 26, 27 | 3jca 1242 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 ∈ (ℤ≥‘𝑁) ∧ 𝐾 ∈ ℤ ∧ 𝐽 < 𝐾)) |
| 29 | | elfzo2 12473 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (𝑁..^𝐾) ↔ (𝐽 ∈ (ℤ≥‘𝑁) ∧ 𝐾 ∈ ℤ ∧ 𝐽 < 𝐾)) |
| 30 | 28, 29 | sylibr 224 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ (𝑁..^𝐾)) |
| 31 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐽 → (𝐸‘𝑖) = (𝐸‘𝐽)) |
| 32 | 31 | ssiun2s 4564 |
. . . . . . . . 9
⊢ (𝐽 ∈ (𝑁..^𝐾) → (𝐸‘𝐽) ⊆ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖)) |
| 33 | 30, 32 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐸‘𝐽) ⊆ ∪ 𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖)) |
| 34 | 33 | ssneld 3605 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑥 ∈ ∪
𝑖 ∈ (𝑁..^𝐾)(𝐸‘𝑖) → ¬ 𝑥 ∈ (𝐸‘𝐽))) |
| 35 | 3, 19, 34 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → ¬ 𝑥 ∈ (𝐸‘𝐽)) |
| 36 | | eldifi 3732 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖)) → 𝑥 ∈ (𝐸‘𝐽)) |
| 37 | 36 | con3i 150 |
. . . . . 6
⊢ (¬
𝑥 ∈ (𝐸‘𝐽) → ¬ 𝑥 ∈ ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖))) |
| 38 | 35, 37 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → ¬ 𝑥 ∈ ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖))) |
| 39 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐽 → (𝐸‘𝑛) = (𝐸‘𝐽)) |
| 40 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → (𝑁..^𝑛) = (𝑁..^𝐽)) |
| 41 | 40 | iuneq1d 4545 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐽 → ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖)) |
| 42 | 39, 41 | difeq12d 3729 |
. . . . . . . . 9
⊢ (𝑛 = 𝐽 → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) = ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖))) |
| 43 | | fvex 6201 |
. . . . . . . . . 10
⊢ (𝐸‘𝐽) ∈ V |
| 44 | | difexg 4808 |
. . . . . . . . . 10
⊢ ((𝐸‘𝐽) ∈ V → ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖)) ∈ V) |
| 45 | 43, 44 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖)) ∈ V |
| 46 | 42, 10, 45 | fvmpt 6282 |
. . . . . . . 8
⊢ (𝐽 ∈ 𝑍 → (𝐹‘𝐽) = ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖))) |
| 47 | 20, 46 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐽) = ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖))) |
| 48 | 47 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → (𝐹‘𝐽) = ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖))) |
| 49 | 48 | eqcomd 2628 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → ((𝐸‘𝐽) ∖ ∪ 𝑖 ∈ (𝑁..^𝐽)(𝐸‘𝑖)) = (𝐹‘𝐽)) |
| 50 | 38, 49 | neleqtrd 2722 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹‘𝐾)) → ¬ 𝑥 ∈ (𝐹‘𝐽)) |
| 51 | 50 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝐹‘𝐾) ¬ 𝑥 ∈ (𝐹‘𝐽)) |
| 52 | | disj 4017 |
. . 3
⊢ (((𝐹‘𝐾) ∩ (𝐹‘𝐽)) = ∅ ↔ ∀𝑥 ∈ (𝐹‘𝐾) ¬ 𝑥 ∈ (𝐹‘𝐽)) |
| 53 | 51, 52 | sylibr 224 |
. 2
⊢ (𝜑 → ((𝐹‘𝐾) ∩ (𝐹‘𝐽)) = ∅) |
| 54 | 2, 53 | eqtrd 2656 |
1
⊢ (𝜑 → ((𝐹‘𝐽) ∩ (𝐹‘𝐾)) = ∅) |