Proof of Theorem lediv12a
| Step | Hyp | Ref
| Expression |
| 1 | | simplr 792 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 𝐷 ∈ ℝ) |
| 2 | | 0re 10040 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
| 3 | | ltletr 10129 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ ∧ 𝐷
∈ ℝ) → ((0 < 𝐶 ∧ 𝐶 ≤ 𝐷) → 0 < 𝐷)) |
| 4 | 2, 3 | mp3an1 1411 |
. . . . . . 7
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 <
𝐶 ∧ 𝐶 ≤ 𝐷) → 0 < 𝐷)) |
| 5 | 4 | imp 445 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 0 < 𝐷) |
| 6 | 5 | gt0ne0d 10592 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 𝐷 ≠ 0) |
| 7 | 1, 6 | rereccld 10852 |
. . . 4
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (1 / 𝐷) ∈ ℝ) |
| 8 | | gt0ne0 10493 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → 𝐶 ≠ 0) |
| 9 | | rereccl 10743 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈
ℝ) |
| 10 | 8, 9 | syldan 487 |
. . . . 5
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → (1 / 𝐶) ∈
ℝ) |
| 11 | 10 | ad2ant2r 783 |
. . . 4
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (1 / 𝐶) ∈ ℝ) |
| 12 | | recgt0 10867 |
. . . . . . 7
⊢ ((𝐷 ∈ ℝ ∧ 0 <
𝐷) → 0 < (1 / 𝐷)) |
| 13 | 1, 5, 12 | syl2anc 693 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 0 < (1 / 𝐷)) |
| 14 | | ltle 10126 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ (1 / 𝐷) ∈ ℝ) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷))) |
| 15 | 2, 7, 14 | sylancr 695 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷))) |
| 16 | 13, 15 | mpd 15 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 0 ≤ (1 / 𝐷)) |
| 17 | | simprr 796 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 𝐶 ≤ 𝐷) |
| 18 | | id 22 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → (𝐶 ∈ ℝ ∧ 0 <
𝐶)) |
| 19 | 18 | ad2ant2r 783 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
| 20 | | lerec 10906 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 0 <
𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 ≤ 𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶))) |
| 21 | 19, 1, 5, 20 | syl12anc 1324 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (𝐶 ≤ 𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶))) |
| 22 | 17, 21 | mpbid 222 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (1 / 𝐷) ≤ (1 / 𝐶)) |
| 23 | 16, 22 | jca 554 |
. . . 4
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶))) |
| 24 | 7, 11, 23 | jca31 557 |
. . 3
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) |
| 25 | | simplll 798 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴 ∈ ℝ) |
| 26 | | simplrl 800 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ 𝐴) |
| 27 | | simpllr 799 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐵 ∈ ℝ) |
| 28 | 25, 26, 27 | jca31 557 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) |
| 29 | | simprll 802 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ∈ ℝ) |
| 30 | | simprrl 804 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ (1 / 𝐷)) |
| 31 | 29, 30 | jca 554 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷))) |
| 32 | | simprlr 803 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐶) ∈ ℝ) |
| 33 | 28, 31, 32 | jca32 558 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1
/ 𝐷)) ∧ (1 / 𝐶) ∈
ℝ))) |
| 34 | | simplrr 801 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴 ≤ 𝐵) |
| 35 | | simprrr 805 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ≤ (1 / 𝐶)) |
| 36 | 34, 35 | jca 554 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴 ≤ 𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶))) |
| 37 | | lemul12a 10881 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1
/ 𝐷)) ∧ (1 / 𝐶) ∈ ℝ)) →
((𝐴 ≤ 𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶)) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶)))) |
| 38 | 33, 36, 37 | sylc 65 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶))) |
| 39 | 24, 38 | sylan2 491 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶))) |
| 40 | | recn 10026 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 41 | 40 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → 𝐴 ∈ ℂ) |
| 42 | | recn 10026 |
. . . . . . 7
⊢ (𝐷 ∈ ℝ → 𝐷 ∈
ℂ) |
| 43 | 42 | ad2antlr 763 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 𝐷 ∈ ℂ) |
| 44 | 43 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → 𝐷 ∈ ℂ) |
| 45 | 6 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → 𝐷 ≠ 0) |
| 46 | 41, 44, 45 | divrecd 10804 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷))) |
| 47 | 46 | adantlr 751 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷))) |
| 48 | 47 | adantlr 751 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷))) |
| 49 | | recn 10026 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
| 50 | 49 | adantr 481 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → 𝐵 ∈
ℂ) |
| 51 | | recn 10026 |
. . . . . . . 8
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℂ) |
| 52 | 51 | ad2antrl 764 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → 𝐶 ∈
ℂ) |
| 53 | 8 | adantl 482 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → 𝐶 ≠ 0) |
| 54 | 50, 52, 53 | divrecd 10804 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
| 55 | 54 | adantrrr 761 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
| 56 | 55 | adantrlr 759 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
| 57 | 56 | adantll 750 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
| 58 | 57 | adantlr 751 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
| 59 | 39, 48, 58 | 3brtr4d 4685 |
1
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |