MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv12a Structured version   Visualization version   Unicode version

Theorem lediv12a 10916
Description: Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
Assertion
Ref Expression
lediv12a  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )

Proof of Theorem lediv12a
StepHypRef Expression
1 simplr 792 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  D  e.  RR )
2 0re 10040 . . . . . . . 8  |-  0  e.  RR
3 ltletr 10129 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  C  e.  RR  /\  D  e.  RR )  ->  (
( 0  <  C  /\  C  <_  D )  ->  0  <  D
) )
42, 3mp3an1 1411 . . . . . . 7  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( 0  < 
C  /\  C  <_  D )  ->  0  <  D ) )
54imp 445 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  0  <  D )
65gt0ne0d 10592 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  D  =/=  0 )
71, 6rereccld 10852 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
1  /  D )  e.  RR )
8 gt0ne0 10493 . . . . . 6  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
9 rereccl 10743 . . . . . 6  |-  ( ( C  e.  RR  /\  C  =/=  0 )  -> 
( 1  /  C
)  e.  RR )
108, 9syldan 487 . . . . 5  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
( 1  /  C
)  e.  RR )
1110ad2ant2r 783 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
1  /  C )  e.  RR )
12 recgt0 10867 . . . . . . 7  |-  ( ( D  e.  RR  /\  0  <  D )  -> 
0  <  ( 1  /  D ) )
131, 5, 12syl2anc 693 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  0  <  ( 1  /  D
) )
14 ltle 10126 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( 1  /  D
)  e.  RR )  ->  ( 0  < 
( 1  /  D
)  ->  0  <_  ( 1  /  D ) ) )
152, 7, 14sylancr 695 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
0  <  ( 1  /  D )  -> 
0  <_  ( 1  /  D ) ) )
1613, 15mpd 15 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  0  <_  ( 1  /  D
) )
17 simprr 796 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  C  <_  D )
18 id 22 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
( C  e.  RR  /\  0  <  C ) )
1918ad2ant2r 783 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  ( C  e.  RR  /\  0  <  C ) )
20 lerec 10906 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  0  <  C )  /\  ( D  e.  RR  /\  0  < 
D ) )  -> 
( C  <_  D  <->  ( 1  /  D )  <_  ( 1  /  C ) ) )
2119, 1, 5, 20syl12anc 1324 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  ( C  <_  D  <->  ( 1  /  D )  <_ 
( 1  /  C
) ) )
2217, 21mpbid 222 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
1  /  D )  <_  ( 1  /  C ) )
2316, 22jca 554 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
0  <_  ( 1  /  D )  /\  ( 1  /  D
)  <_  ( 1  /  C ) ) )
247, 11, 23jca31 557 . . 3  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
( ( 1  /  D )  e.  RR  /\  ( 1  /  C
)  e.  RR )  /\  ( 0  <_ 
( 1  /  D
)  /\  ( 1  /  D )  <_ 
( 1  /  C
) ) ) )
25 simplll 798 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  ->  A  e.  RR )
26 simplrl 800 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
0  <_  A )
27 simpllr 799 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  ->  B  e.  RR )
2825, 26, 27jca31 557 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) )
29 simprll 802 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( 1  /  D
)  e.  RR )
30 simprrl 804 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
0  <_  ( 1  /  D ) )
3129, 30jca 554 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( ( 1  /  D )  e.  RR  /\  0  <_  ( 1  /  D ) ) )
32 simprlr 803 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( 1  /  C
)  e.  RR )
3328, 31, 32jca32 558 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( ( 1  /  D )  e.  RR  /\  0  <_  ( 1  /  D ) )  /\  ( 1  /  C )  e.  RR ) ) )
34 simplrr 801 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  ->  A  <_  B )
35 simprrr 805 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( 1  /  D
)  <_  ( 1  /  C ) )
3634, 35jca 554 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( A  <_  B  /\  ( 1  /  D
)  <_  ( 1  /  C ) ) )
37 lemul12a 10881 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( ( 1  /  D )  e.  RR  /\  0  <_  ( 1  /  D ) )  /\  ( 1  /  C )  e.  RR ) )  ->  (
( A  <_  B  /\  ( 1  /  D
)  <_  ( 1  /  C ) )  ->  ( A  x.  ( 1  /  D
) )  <_  ( B  x.  ( 1  /  C ) ) ) )
3833, 36, 37sylc 65 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( A  x.  (
1  /  D ) )  <_  ( B  x.  ( 1  /  C
) ) )
3924, 38sylan2 491 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  x.  ( 1  /  D
) )  <_  ( B  x.  ( 1  /  C ) ) )
40 recn 10026 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
4140adantr 481 . . . . 5  |-  ( ( A  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  A  e.  CC )
42 recn 10026 . . . . . . 7  |-  ( D  e.  RR  ->  D  e.  CC )
4342ad2antlr 763 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  D  e.  CC )
4443adantl 482 . . . . 5  |-  ( ( A  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D  e.  CC )
456adantl 482 . . . . 5  |-  ( ( A  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D  =/=  0 )
4641, 44, 45divrecd 10804 . . . 4  |-  ( ( A  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  =  ( A  x.  ( 1  /  D ) ) )
4746adantlr 751 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  =  ( A  x.  ( 1  /  D ) ) )
4847adantlr 751 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  =  ( A  x.  ( 1  /  D ) ) )
49 recn 10026 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  CC )
5049adantr 481 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  CC )
51 recn 10026 . . . . . . . 8  |-  ( C  e.  RR  ->  C  e.  CC )
5251ad2antrl 764 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  CC )
538adantl 482 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  =/=  0 )
5450, 52, 53divrecd 10804 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
5554adantrrr 761 . . . . 5  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  ( 0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  (
1  /  C ) ) )
5655adantrlr 759 . . . 4  |-  ( ( B  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
5756adantll 750 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
5857adantlr 751 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
5939, 48, 583brtr4d 4685 1  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  lediv2a  10917  lediv12ad  11931  stoweidlem1  40218
  Copyright terms: Public domain W3C validator