| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lediv12a | Structured version Visualization version Unicode version | ||
| Description: Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.) |
| Ref | Expression |
|---|---|
| lediv12a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 792 |
. . . . 5
| |
| 2 | 0re 10040 |
. . . . . . . 8
| |
| 3 | ltletr 10129 |
. . . . . . . 8
| |
| 4 | 2, 3 | mp3an1 1411 |
. . . . . . 7
|
| 5 | 4 | imp 445 |
. . . . . 6
|
| 6 | 5 | gt0ne0d 10592 |
. . . . 5
|
| 7 | 1, 6 | rereccld 10852 |
. . . 4
|
| 8 | gt0ne0 10493 |
. . . . . 6
| |
| 9 | rereccl 10743 |
. . . . . 6
| |
| 10 | 8, 9 | syldan 487 |
. . . . 5
|
| 11 | 10 | ad2ant2r 783 |
. . . 4
|
| 12 | recgt0 10867 |
. . . . . . 7
| |
| 13 | 1, 5, 12 | syl2anc 693 |
. . . . . 6
|
| 14 | ltle 10126 |
. . . . . . 7
| |
| 15 | 2, 7, 14 | sylancr 695 |
. . . . . 6
|
| 16 | 13, 15 | mpd 15 |
. . . . 5
|
| 17 | simprr 796 |
. . . . . 6
| |
| 18 | id 22 |
. . . . . . . 8
| |
| 19 | 18 | ad2ant2r 783 |
. . . . . . 7
|
| 20 | lerec 10906 |
. . . . . . 7
| |
| 21 | 19, 1, 5, 20 | syl12anc 1324 |
. . . . . 6
|
| 22 | 17, 21 | mpbid 222 |
. . . . 5
|
| 23 | 16, 22 | jca 554 |
. . . 4
|
| 24 | 7, 11, 23 | jca31 557 |
. . 3
|
| 25 | simplll 798 |
. . . . . 6
| |
| 26 | simplrl 800 |
. . . . . 6
| |
| 27 | simpllr 799 |
. . . . . 6
| |
| 28 | 25, 26, 27 | jca31 557 |
. . . . 5
|
| 29 | simprll 802 |
. . . . . 6
| |
| 30 | simprrl 804 |
. . . . . 6
| |
| 31 | 29, 30 | jca 554 |
. . . . 5
|
| 32 | simprlr 803 |
. . . . 5
| |
| 33 | 28, 31, 32 | jca32 558 |
. . . 4
|
| 34 | simplrr 801 |
. . . . 5
| |
| 35 | simprrr 805 |
. . . . 5
| |
| 36 | 34, 35 | jca 554 |
. . . 4
|
| 37 | lemul12a 10881 |
. . . 4
| |
| 38 | 33, 36, 37 | sylc 65 |
. . 3
|
| 39 | 24, 38 | sylan2 491 |
. 2
|
| 40 | recn 10026 |
. . . . . 6
| |
| 41 | 40 | adantr 481 |
. . . . 5
|
| 42 | recn 10026 |
. . . . . . 7
| |
| 43 | 42 | ad2antlr 763 |
. . . . . 6
|
| 44 | 43 | adantl 482 |
. . . . 5
|
| 45 | 6 | adantl 482 |
. . . . 5
|
| 46 | 41, 44, 45 | divrecd 10804 |
. . . 4
|
| 47 | 46 | adantlr 751 |
. . 3
|
| 48 | 47 | adantlr 751 |
. 2
|
| 49 | recn 10026 |
. . . . . . . 8
| |
| 50 | 49 | adantr 481 |
. . . . . . 7
|
| 51 | recn 10026 |
. . . . . . . 8
| |
| 52 | 51 | ad2antrl 764 |
. . . . . . 7
|
| 53 | 8 | adantl 482 |
. . . . . . 7
|
| 54 | 50, 52, 53 | divrecd 10804 |
. . . . . 6
|
| 55 | 54 | adantrrr 761 |
. . . . 5
|
| 56 | 55 | adantrlr 759 |
. . . 4
|
| 57 | 56 | adantll 750 |
. . 3
|
| 58 | 57 | adantlr 751 |
. 2
|
| 59 | 39, 48, 58 | 3brtr4d 4685 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 |
| This theorem is referenced by: lediv2a 10917 lediv12ad 11931 stoweidlem1 40218 |
| Copyright terms: Public domain | W3C validator |