![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuppnfd | Structured version Visualization version GIF version |
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuppnfd.j | ⊢ Ⅎ𝑗𝐹 |
limsuppnfd.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsuppnfd.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
limsuppnfd.u | ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
Ref | Expression |
---|---|
limsuppnfd | ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsuppnfd.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | limsuppnfd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
3 | limsuppnfd.u | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) | |
4 | breq1 4656 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑗))) | |
5 | 4 | anbi2d 740 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
6 | 5 | rexbidv 3052 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
7 | 6 | ralbidv 2986 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
8 | breq1 4656 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
9 | 8 | anbi1d 741 | . . . . . . . . 9 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
10 | 9 | rexbidv 3052 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
11 | nfv 1843 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) | |
12 | nfv 1843 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑙 | |
13 | nfcv 2764 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑦 | |
14 | nfcv 2764 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
15 | limsuppnfd.j | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
16 | nfcv 2764 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
17 | 15, 16 | nffv 6198 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
18 | 13, 14, 17 | nfbr 4699 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
19 | 12, 18 | nfan 1828 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) |
20 | breq2 4657 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑙 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑙)) | |
21 | fveq2 6191 | . . . . . . . . . . . 12 ⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) | |
22 | 21 | breq2d 4665 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑙 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑙))) |
23 | 20, 22 | anbi12d 747 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑙 → ((𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
24 | 11, 19, 23 | cbvrex 3168 | . . . . . . . . 9 ⊢ (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
25 | 24 | a1i 11 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
26 | 10, 25 | bitrd 268 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
27 | 26 | cbvralv 3171 | . . . . . 6 ⊢ (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
28 | 27 | a1i 11 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
29 | 7, 28 | bitrd 268 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
30 | 29 | cbvralv 3171 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
31 | 3, 30 | sylib 208 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
32 | eqid 2622 | . 2 ⊢ (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
33 | 1, 2, 31, 32 | limsuppnfdlem 39933 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 Ⅎwnfc 2751 ∀wral 2912 ∃wrex 2913 ∩ cin 3573 ⊆ wss 3574 class class class wbr 4653 ↦ cmpt 4729 “ cima 5117 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 supcsup 8346 ℝcr 9935 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 [,)cico 12177 lim supclsp 14201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-ico 12181 df-limsup 14202 |
This theorem is referenced by: limsupub 39936 limsuppnflem 39942 |
Copyright terms: Public domain | W3C validator |