![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnophmi | Structured version Visualization version GIF version |
Description: A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnophm.1 | ⊢ 𝑇 ∈ LinOp |
lnophm.2 | ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ |
Ref | Expression |
---|---|
lnophmi | ⊢ 𝑇 ∈ HrmOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnophm.1 | . . 3 ⊢ 𝑇 ∈ LinOp | |
2 | 1 | lnopfi 28828 | . 2 ⊢ 𝑇: ℋ⟶ ℋ |
3 | oveq1 6657 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑦 ·ih (𝑇‘𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧))) | |
4 | fveq2 6191 | . . . . . 6 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑇‘𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
5 | 4 | oveq1d 6665 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑇‘𝑦) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧)) |
6 | 3, 5 | eqeq12d 2637 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧))) |
7 | fveq2 6191 | . . . . . 6 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → (𝑇‘𝑧) = (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) | |
8 | 7 | oveq2d 6666 | . . . . 5 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ)))) |
9 | oveq2 6658 | . . . . 5 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) | |
10 | 8, 9 | eqeq12d 2637 | . . . 4 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → ((if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ)))) |
11 | ifhvhv0 27879 | . . . . 5 ⊢ if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ∈ ℋ | |
12 | ifhvhv0 27879 | . . . . 5 ⊢ if(𝑧 ∈ ℋ, 𝑧, 0ℎ) ∈ ℋ | |
13 | lnophm.2 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ | |
14 | 11, 12, 1, 13 | lnophmlem2 28876 | . . . 4 ⊢ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ)) |
15 | 6, 10, 14 | dedth2h 4140 | . . 3 ⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧)) |
16 | 15 | rgen2a 2977 | . 2 ⊢ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧) |
17 | elhmop 28732 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧))) | |
18 | 2, 16, 17 | mpbir2an 955 | 1 ⊢ 𝑇 ∈ HrmOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 ∀wral 2912 ifcif 4086 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 ℋchil 27776 ·ih csp 27779 0ℎc0v 27781 LinOpclo 27804 HrmOpcho 27807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvmulass 27864 ax-hvdistr1 27865 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-3 11080 df-4 11081 df-cj 13839 df-re 13840 df-im 13841 df-hvsub 27828 df-lnop 28700 df-hmop 28703 |
This theorem is referenced by: lnophm 28878 |
Copyright terms: Public domain | W3C validator |