MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvacl Structured version   Visualization version   GIF version

Theorem lssvacl 18954
Description: Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssvacl.p + = (+g𝑊)
lssvacl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssvacl (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)

Proof of Theorem lssvacl
StepHypRef Expression
1 simpll 790 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑊 ∈ LMod)
2 eqid 2622 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
3 lssvacl.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
42, 3lssel 18938 . . . . 5 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
54ad2ant2lr 784 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋 ∈ (Base‘𝑊))
6 eqid 2622 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2622 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2622 . . . . 5 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
92, 6, 7, 8lmodvs1 18891 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
101, 5, 9syl2anc 693 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
1110oveq1d 6665 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + 𝑌) = (𝑋 + 𝑌))
12 simplr 792 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑈𝑆)
13 eqid 2622 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
146, 13, 8lmod1cl 18890 . . . 4 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
1514ad2antrr 762 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
16 simprl 794 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋𝑈)
17 simprr 796 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑌𝑈)
18 lssvacl.p . . . 4 + = (+g𝑊)
196, 13, 18, 7, 3lsscl 18943 . . 3 ((𝑈𝑆 ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑈𝑌𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + 𝑌) ∈ 𝑈)
2012, 15, 16, 17, 19syl13anc 1328 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + 𝑌) ∈ 𝑈)
2111, 20eqeltrrd 2702 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  1rcur 18501  LModclmod 18863  LSubSpclss 18932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933
This theorem is referenced by:  lsssubg  18957  lspprvacl  18999  lspvadd  19096  lidlacl  19213  minveclem2  23197  pjthlem2  23209  lshpkrlem5  34401  lcfrlem6  36836  lcfrlem19  36850  mapdpglem9  36969  mapdpglem14  36974
  Copyright terms: Public domain W3C validator