MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mappwen Structured version   Visualization version   GIF version

Theorem mappwen 8935
Description: Power rule for cardinal arithmetic. Theorem 11.21 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
mappwen (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴𝑚 𝐵) ≈ 𝒫 𝐵)

Proof of Theorem mappwen
StepHypRef Expression
1 simprr 796 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
2 pw2eng 8066 . . . . . 6 (𝐵 ∈ dom card → 𝒫 𝐵 ≈ (2𝑜𝑚 𝐵))
32ad2antrr 762 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → 𝒫 𝐵 ≈ (2𝑜𝑚 𝐵))
4 domentr 8015 . . . . 5 ((𝐴 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≈ (2𝑜𝑚 𝐵)) → 𝐴 ≼ (2𝑜𝑚 𝐵))
51, 3, 4syl2anc 693 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐴 ≼ (2𝑜𝑚 𝐵))
6 mapdom1 8125 . . . 4 (𝐴 ≼ (2𝑜𝑚 𝐵) → (𝐴𝑚 𝐵) ≼ ((2𝑜𝑚 𝐵) ↑𝑚 𝐵))
75, 6syl 17 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴𝑚 𝐵) ≼ ((2𝑜𝑚 𝐵) ↑𝑚 𝐵))
8 2on 7568 . . . . . . 7 2𝑜 ∈ On
98a1i 11 . . . . . 6 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → 2𝑜 ∈ On)
10 simpll 790 . . . . . 6 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐵 ∈ dom card)
11 mapxpen 8126 . . . . . 6 ((2𝑜 ∈ On ∧ 𝐵 ∈ dom card ∧ 𝐵 ∈ dom card) → ((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ≈ (2𝑜𝑚 (𝐵 × 𝐵)))
129, 10, 10, 11syl3anc 1326 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → ((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ≈ (2𝑜𝑚 (𝐵 × 𝐵)))
138elexi 3213 . . . . . . 7 2𝑜 ∈ V
1413enref 7988 . . . . . 6 2𝑜 ≈ 2𝑜
15 infxpidm2 8840 . . . . . . 7 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵) → (𝐵 × 𝐵) ≈ 𝐵)
1615adantr 481 . . . . . 6 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐵 × 𝐵) ≈ 𝐵)
17 mapen 8124 . . . . . 6 ((2𝑜 ≈ 2𝑜 ∧ (𝐵 × 𝐵) ≈ 𝐵) → (2𝑜𝑚 (𝐵 × 𝐵)) ≈ (2𝑜𝑚 𝐵))
1814, 16, 17sylancr 695 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (2𝑜𝑚 (𝐵 × 𝐵)) ≈ (2𝑜𝑚 𝐵))
19 entr 8008 . . . . 5 ((((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ≈ (2𝑜𝑚 (𝐵 × 𝐵)) ∧ (2𝑜𝑚 (𝐵 × 𝐵)) ≈ (2𝑜𝑚 𝐵)) → ((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ≈ (2𝑜𝑚 𝐵))
2012, 18, 19syl2anc 693 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → ((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ≈ (2𝑜𝑚 𝐵))
213ensymd 8007 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵)
22 entr 8008 . . . 4 ((((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ≈ (2𝑜𝑚 𝐵) ∧ (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵) → ((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ≈ 𝒫 𝐵)
2320, 21, 22syl2anc 693 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → ((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ≈ 𝒫 𝐵)
24 domentr 8015 . . 3 (((𝐴𝑚 𝐵) ≼ ((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ∧ ((2𝑜𝑚 𝐵) ↑𝑚 𝐵) ≈ 𝒫 𝐵) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
257, 23, 24syl2anc 693 . 2 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
26 mapdom1 8125 . . . 4 (2𝑜𝐴 → (2𝑜𝑚 𝐵) ≼ (𝐴𝑚 𝐵))
2726ad2antrl 764 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (2𝑜𝑚 𝐵) ≼ (𝐴𝑚 𝐵))
28 endomtr 8014 . . 3 ((𝒫 𝐵 ≈ (2𝑜𝑚 𝐵) ∧ (2𝑜𝑚 𝐵) ≼ (𝐴𝑚 𝐵)) → 𝒫 𝐵 ≼ (𝐴𝑚 𝐵))
293, 27, 28syl2anc 693 . 2 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → 𝒫 𝐵 ≼ (𝐴𝑚 𝐵))
30 sbth 8080 . 2 (((𝐴𝑚 𝐵) ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ (𝐴𝑚 𝐵)) → (𝐴𝑚 𝐵) ≈ 𝒫 𝐵)
3125, 29, 30syl2anc 693 1 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴𝑚 𝐵) ≈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  𝒫 cpw 4158   class class class wbr 4653   × cxp 5112  dom cdm 5114  Oncon0 5723  (class class class)co 6650  ωcom 7065  2𝑜c2o 7554  𝑚 cmap 7857  cen 7952  cdom 7953  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765
This theorem is referenced by:  alephexp1  9401  hauspwdom  21304
  Copyright terms: Public domain W3C validator