MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmptcl Structured version   Visualization version   GIF version

Theorem mbfmptcl 23404
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
mbfmptcl.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
mbfmptcl ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfmptcl
StepHypRef Expression
1 mbfmptcl.1 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 mbff 23394 . . . . 5 ((𝑥𝐴𝐵) ∈ MblFn → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 mbfmptcl.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 5632 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6031 . . . 4 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 222 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
10 eqid 2622 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1110fmpt 6381 . . 3 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ)
129, 11sylibr 224 . 2 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
1312r19.21bi 2932 1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cmpt 4729  dom cdm 5114  wf 5884  cc 9934  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-mbf 23388
This theorem is referenced by:  mbfss  23413  mbfneg  23417  mbfmulc2  23430  mbflim  23435  itgcnlem  23556  itgcnval  23566  itgre  23567  itgim  23568  iblneg  23569  itgneg  23570  iblss  23571  iblss2  23572  ibladd  23587  iblsub  23588  itgadd  23591  itgsub  23592  itgfsum  23593  iblabs  23595  iblabsr  23596  iblmulc2  23597  itgmulc2  23600  itgabs  23601  itgsplit  23602  bddmulibl  23605  itgcn  23609  ditgswap  23623  ditgsplitlem  23624  ftc1a  23800  ibladdnc  33467  itgaddnc  33470  iblsubnc  33471  itgsubnc  33472  iblabsnc  33474  iblmulc2nc  33475  itgmulc2nc  33478  itgabsnc  33479
  Copyright terms: Public domain W3C validator