Proof of Theorem mbfmulc2
Step | Hyp | Ref
| Expression |
1 | | mbfmulc2.3 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
2 | | mbfmulc2.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
3 | 1, 2 | mbfdm2 23405 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ dom vol) |
4 | | mbfmulc2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
5 | 4 | recld 13934 |
. . . . . . . 8
⊢ (𝜑 → (ℜ‘𝐶) ∈
ℝ) |
6 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℝ) |
7 | 6 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℂ) |
8 | 1, 2 | mbfmptcl 23404 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
9 | 8 | recld 13934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
10 | 9 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
11 | 7, 10 | mulcld 10060 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ) |
12 | | ovexd 6680 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ V) |
13 | | fconstmpt 5163 |
. . . . . . 7
⊢ (𝐴 × {(ℜ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) |
14 | 13 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶))) |
15 | | eqidd 2623 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) |
16 | 3, 6, 9, 14, 15 | offval2 6914 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) = (𝑥 ∈ 𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵)))) |
17 | 4 | imcld 13935 |
. . . . . . . 8
⊢ (𝜑 → (ℑ‘𝐶) ∈
ℝ) |
18 | 17 | renegcld 10457 |
. . . . . . 7
⊢ (𝜑 → -(ℑ‘𝐶) ∈
ℝ) |
19 | 18 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐶) ∈ ℝ) |
20 | 8 | imcld 13935 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
21 | | fconstmpt 5163 |
. . . . . . 7
⊢ (𝐴 × {-(ℑ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ -(ℑ‘𝐶)) |
22 | 21 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ -(ℑ‘𝐶))) |
23 | | eqidd 2623 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) |
24 | 3, 19, 20, 22, 23 | offval2 6914 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) = (𝑥 ∈ 𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵)))) |
25 | 3, 11, 12, 16, 24 | offval2 6914 |
. . . 4
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∘𝑓 + ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓
· (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))))) |
26 | 17 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℝ) |
27 | 26 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℂ) |
28 | 20 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
29 | 27, 28 | mulcld 10060 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ) |
30 | 11, 29 | negsubd 10398 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) |
31 | 27, 28 | mulneg1d 10483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵))) |
32 | 31 | oveq2d 6666 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵)))) |
33 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
34 | 33, 8 | remuld 13958 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) |
35 | 30, 32, 34 | 3eqtr4d 2666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (ℜ‘(𝐶 · 𝐵))) |
36 | 35 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐶 · 𝐵)))) |
37 | 25, 36 | eqtrd 2656 |
. . 3
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∘𝑓 + ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓
· (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐶 · 𝐵)))) |
38 | 8 | ismbfcn2 23406 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))) |
39 | 1, 38 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)) |
40 | 39 | simpld 475 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn) |
41 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) |
42 | 10, 41 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ) |
43 | 40, 5, 42 | mbfmulc2re 23415 |
. . . 4
⊢ (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn) |
44 | 39 | simprd 479 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn) |
45 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) |
46 | 28, 45 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ) |
47 | 44, 18, 46 | mbfmulc2re 23415 |
. . . 4
⊢ (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn) |
48 | 43, 47 | mbfadd 23428 |
. . 3
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∘𝑓 + ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓
· (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)))) ∈
MblFn) |
49 | 37, 48 | eqeltrrd 2702 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn) |
50 | | ovexd 6680 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ V) |
51 | | ovexd 6680 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ V) |
52 | 3, 6, 20, 14, 23 | offval2 6914 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) = (𝑥 ∈ 𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵)))) |
53 | | fconstmpt 5163 |
. . . . . . 7
⊢ (𝐴 × {(ℑ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) |
54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶))) |
55 | 3, 26, 9, 54, 15 | offval2 6914 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) = (𝑥 ∈ 𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵)))) |
56 | 3, 50, 51, 52, 55 | offval2 6914 |
. . . 4
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∘𝑓 + ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓
· (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))) |
57 | 33, 8 | immuld 13959 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))) |
58 | 57 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥 ∈ 𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))) |
59 | 56, 58 | eqtr4d 2659 |
. . 3
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∘𝑓 + ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓
· (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐶 · 𝐵)))) |
60 | 44, 5, 46 | mbfmulc2re 23415 |
. . . 4
⊢ (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn) |
61 | 40, 17, 42 | mbfmulc2re 23415 |
. . . 4
⊢ (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn) |
62 | 60, 61 | mbfadd 23428 |
. . 3
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∘𝑓 + ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓
· (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)))) ∈
MblFn) |
63 | 59, 62 | eqeltrrd 2702 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn) |
64 | 33, 8 | mulcld 10060 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
65 | 64 | ismbfcn2 23406 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn))) |
66 | 49, 63, 65 | mpbir2and 957 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) |