Proof of Theorem ibladd
| Step | Hyp | Ref
| Expression |
| 1 | | itgadd.2 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 2 | | eqid 2622 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) |
| 3 | | eqid 2622 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) |
| 4 | | eqid 2622 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) |
| 5 | | eqid 2622 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) |
| 6 | | itgadd.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 7 | 2, 3, 4, 5, 6 | iblcnlem 23555 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ)))) |
| 8 | 1, 7 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ))) |
| 9 | 8 | simp1d 1073 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 10 | 9, 6 | mbfdm2 23405 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 11 | | itgadd.3 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| 12 | | eqidd 2623 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 13 | | eqidd 2623 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 14 | 10, 6, 11, 12, 13 | offval2 6914 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘𝑓 + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶))) |
| 15 | | itgadd.4 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 16 | | eqid 2622 |
. . . . . . 7
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) |
| 17 | | eqid 2622 |
. . . . . . 7
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) |
| 18 | | eqid 2622 |
. . . . . . 7
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) |
| 19 | | eqid 2622 |
. . . . . . 7
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) |
| 20 | 16, 17, 18, 19, 11 | iblcnlem 23555 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ)))) |
| 21 | 15, 20 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ))) |
| 22 | 21 | simp1d 1073 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 23 | 9, 22 | mbfadd 23428 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘𝑓 + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ MblFn) |
| 24 | 14, 23 | eqeltrrd 2702 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) |
| 25 | 9, 6 | mbfmptcl 23404 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 26 | 25 | recld 13934 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
| 27 | 22, 11 | mbfmptcl 23404 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 28 | 27 | recld 13934 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℝ) |
| 29 | 25, 27 | readdd 13954 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶))) |
| 30 | 25 | ismbfcn2 23406 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))) |
| 31 | 9, 30 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)) |
| 32 | 31 | simpld 475 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn) |
| 33 | 27 | ismbfcn2 23406 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn))) |
| 34 | 22, 33 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)) |
| 35 | 34 | simpld 475 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn) |
| 36 | 8 | simp2d 1074 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈
ℝ)) |
| 37 | 36 | simpld 475 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈
ℝ) |
| 38 | 21 | simp2d 1074 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈
ℝ)) |
| 39 | 38 | simpld 475 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈
ℝ) |
| 40 | 26, 28, 29, 32, 35, 37, 39 | ibladdlem 23586 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
| 41 | 26 | renegcld 10457 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘𝐵) ∈ ℝ) |
| 42 | 28 | renegcld 10457 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘𝐶) ∈ ℝ) |
| 43 | 29 | negeqd 10275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘(𝐵 + 𝐶)) = -((ℜ‘𝐵) + (ℜ‘𝐶))) |
| 44 | 26 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
| 45 | 28 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℂ) |
| 46 | 44, 45 | negdid 10405 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -((ℜ‘𝐵) + (ℜ‘𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶))) |
| 47 | 43, 46 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘(𝐵 + 𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶))) |
| 48 | 26, 32 | mbfneg 23417 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(ℜ‘𝐵)) ∈ MblFn) |
| 49 | 28, 35 | mbfneg 23417 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(ℜ‘𝐶)) ∈ MblFn) |
| 50 | 36 | simprd 479 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈
ℝ) |
| 51 | 38 | simprd 479 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈
ℝ) |
| 52 | 41, 42, 47, 48, 49, 50, 51 | ibladdlem 23586 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
| 53 | 40, 52 | jca 554 |
. 2
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)) |
| 54 | 25 | imcld 13935 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
| 55 | 27 | imcld 13935 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℝ) |
| 56 | 25, 27 | imaddd 13955 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶))) |
| 57 | 31 | simprd 479 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn) |
| 58 | 34 | simprd 479 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn) |
| 59 | 8 | simp3d 1075 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ)) |
| 60 | 59 | simpld 475 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈
ℝ) |
| 61 | 21 | simp3d 1075 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ)) |
| 62 | 61 | simpld 475 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈
ℝ) |
| 63 | 54, 55, 56, 57, 58, 60, 62 | ibladdlem 23586 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
| 64 | 54 | renegcld 10457 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐵) ∈ ℝ) |
| 65 | 55 | renegcld 10457 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐶) ∈ ℝ) |
| 66 | 56 | negeqd 10275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘(𝐵 + 𝐶)) = -((ℑ‘𝐵) + (ℑ‘𝐶))) |
| 67 | 54 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
| 68 | 55 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℂ) |
| 69 | 67, 68 | negdid 10405 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -((ℑ‘𝐵) + (ℑ‘𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶))) |
| 70 | 66, 69 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘(𝐵 + 𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶))) |
| 71 | 54, 57 | mbfneg 23417 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(ℑ‘𝐵)) ∈ MblFn) |
| 72 | 55, 58 | mbfneg 23417 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(ℑ‘𝐶)) ∈ MblFn) |
| 73 | 59 | simprd 479 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ) |
| 74 | 61 | simprd 479 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ) |
| 75 | 64, 65, 70, 71, 72, 73, 74 | ibladdlem 23586 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
| 76 | 63, 75 | jca 554 |
. 2
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)) |
| 77 | | eqid 2622 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) |
| 78 | | eqid 2622 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) |
| 79 | | eqid 2622 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) |
| 80 | | eqid 2622 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) |
| 81 | | ovexd 6680 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + 𝐶) ∈ V) |
| 82 | 77, 78, 79, 80, 81 | iblcnlem 23555 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)))) |
| 83 | 24, 53, 76, 82 | mpbir3and 1245 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈
𝐿1) |