| Step | Hyp | Ref
| Expression |
| 1 | | mbflim.1 |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 2 | | mbflim.2 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | | mbflim.4 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) |
| 4 | | fvex 6201 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) ∈ V |
| 5 | 1, 4 | eqeltri 2697 |
. . . . . 6
⊢ 𝑍 ∈ V |
| 6 | 5 | mptex 6486 |
. . . . 5
⊢ (𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵)) ∈ V |
| 7 | 6 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵)) ∈ V) |
| 8 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℤ) |
| 9 | | mbflim.5 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 10 | | mbflim.6 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ 𝑉) |
| 11 | 10 | anassrs 680 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 12 | 9, 11 | mbfmptcl 23404 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 13 | 12 | an32s 846 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| 14 | | eqid 2622 |
. . . . . 6
⊢ (𝑛 ∈ 𝑍 ↦ 𝐵) = (𝑛 ∈ 𝑍 ↦ 𝐵) |
| 15 | 13, 14 | fmptd 6385 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℂ) |
| 16 | 15 | ffvelrnda 6359 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℂ) |
| 17 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
| 18 | 13 | recld 13934 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (ℜ‘𝐵) ∈ ℝ) |
| 19 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵)) = (𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵)) |
| 20 | 19 | fvmpt2 6291 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑍 ∧ (ℜ‘𝐵) ∈ ℝ) → ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵)) |
| 21 | 17, 18, 20 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵)) |
| 22 | 14 | fvmpt2 6291 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝑍 ∧ 𝐵 ∈ ℂ) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = 𝐵) |
| 23 | 17, 13, 22 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = 𝐵) |
| 24 | 23 | fveq2d 6195 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)) = (ℜ‘𝐵)) |
| 25 | 21, 24 | eqtr4d 2659 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
| 26 | 25 | ralrimiva 2966 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
| 27 | | nffvmpt1 6199 |
. . . . . . . 8
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑘) |
| 28 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑛ℜ |
| 29 | | nffvmpt1 6199 |
. . . . . . . . 9
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) |
| 30 | 28, 29 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑛(ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 31 | 27, 30 | nfeq 2776 |
. . . . . . 7
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 32 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑘((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
| 33 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑘) = ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑛)) |
| 34 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
| 35 | 34 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
| 36 | 33, 35 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) ↔ ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)))) |
| 37 | 31, 32, 36 | cbvral 3167 |
. . . . . 6
⊢
(∀𝑘 ∈
𝑍 ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) ↔ ∀𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
| 38 | 26, 37 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) |
| 39 | 38 | r19.21bi 2932 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) |
| 40 | 1, 3, 7, 8, 16, 39 | climre 14336 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (ℜ‘𝐵)) ⇝ (ℜ‘𝐶)) |
| 41 | 12 | ismbfcn2 23406 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))) |
| 42 | 9, 41 | mpbid 222 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)) |
| 43 | 42 | simpld 475 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn) |
| 44 | 12 | anasss 679 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℂ) |
| 45 | 44 | recld 13934 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → (ℜ‘𝐵) ∈ ℝ) |
| 46 | 1, 2, 40, 43, 45 | mbflimlem 23434 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn) |
| 47 | 5 | mptex 6486 |
. . . . 5
⊢ (𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵)) ∈ V |
| 48 | 47 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵)) ∈ V) |
| 49 | 13 | imcld 13935 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (ℑ‘𝐵) ∈ ℝ) |
| 50 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵)) = (𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵)) |
| 51 | 50 | fvmpt2 6291 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑍 ∧ (ℑ‘𝐵) ∈ ℝ) → ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵)) |
| 52 | 17, 49, 51 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵)) |
| 53 | 23 | fveq2d 6195 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)) = (ℑ‘𝐵)) |
| 54 | 52, 53 | eqtr4d 2659 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
| 55 | 54 | ralrimiva 2966 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
| 56 | | nffvmpt1 6199 |
. . . . . . . 8
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑘) |
| 57 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑛ℑ |
| 58 | 57, 29 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑛(ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 59 | 56, 58 | nfeq 2776 |
. . . . . . 7
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 60 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑘((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
| 61 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑘) = ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑛)) |
| 62 | 34 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
| 63 | 61, 62 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) ↔ ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)))) |
| 64 | 59, 60, 63 | cbvral 3167 |
. . . . . 6
⊢
(∀𝑘 ∈
𝑍 ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) ↔ ∀𝑛 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
| 65 | 55, 64 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) |
| 66 | 65 | r19.21bi 2932 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) |
| 67 | 1, 3, 48, 8, 16, 66 | climim 14337 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (ℑ‘𝐵)) ⇝ (ℑ‘𝐶)) |
| 68 | 42 | simprd 479 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn) |
| 69 | 44 | imcld 13935 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → (ℑ‘𝐵) ∈ ℝ) |
| 70 | 1, 2, 67, 68, 69 | mbflimlem 23434 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn) |
| 71 | | climcl 14230 |
. . . 4
⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶 → 𝐶 ∈ ℂ) |
| 72 | 3, 71 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 73 | 72 | ismbfcn2 23406 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn))) |
| 74 | 46, 70, 73 | mpbir2and 957 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |