![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdscnlem | Structured version Visualization version GIF version |
Description: Lemma for metdscn 22659. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metdscn.c | ⊢ 𝐶 = (dist‘ℝ*𝑠) |
metdscn.k | ⊢ 𝐾 = (MetOpen‘𝐶) |
metdscnlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
metdscnlem.2 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
metdscnlem.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
metdscnlem.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
metdscnlem.5 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
metdscnlem.6 | ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) |
Ref | Expression |
---|---|
metdscnlem | ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metdscnlem.1 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | metdscnlem.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
3 | metdscn.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
4 | 3 | metdsf 22651 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | 1, 2, 4 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
6 | metdscnlem.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 5, 6 | ffvelrnd 6360 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ (0[,]+∞)) |
8 | elxrge0 12281 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) ↔ ((𝐹‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐴))) | |
9 | 8 | simplbi 476 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → (𝐹‘𝐴) ∈ ℝ*) |
10 | 7, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ*) |
11 | metdscnlem.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
12 | 5, 11 | ffvelrnd 6360 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (0[,]+∞)) |
13 | elxrge0 12281 | . . . . . 6 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) ↔ ((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵))) | |
14 | 13 | simplbi 476 | . . . . 5 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → (𝐹‘𝐵) ∈ ℝ*) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ*) |
16 | 15 | xnegcld 12130 | . . 3 ⊢ (𝜑 → -𝑒(𝐹‘𝐵) ∈ ℝ*) |
17 | 10, 16 | xaddcld 12131 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ∈ ℝ*) |
18 | xmetcl 22136 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
19 | 1, 6, 11, 18 | syl3anc 1326 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*) |
20 | metdscnlem.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
21 | 20 | rpxrd 11873 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
22 | 3 | metdstri 22654 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
23 | 1, 2, 6, 11, 22 | syl22anc 1327 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
24 | 8 | simprbi 480 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐴)) |
25 | 7, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐴)) |
26 | 13 | simprbi 480 | . . . . . 6 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐵)) |
27 | 12, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐵)) |
28 | ge0nemnf 12004 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵)) → (𝐹‘𝐵) ≠ -∞) | |
29 | 15, 27, 28 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ≠ -∞) |
30 | xmetge0 22149 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | |
31 | 1, 6, 11, 30 | syl3anc 1326 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴𝐷𝐵)) |
32 | xlesubadd 12093 | . . . 4 ⊢ ((((𝐹‘𝐴) ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹‘𝐴) ∧ (𝐹‘𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) | |
33 | 10, 15, 19, 25, 29, 31, 32 | syl33anc 1341 | . . 3 ⊢ (𝜑 → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) |
34 | 23, 33 | mpbird 247 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
35 | metdscnlem.6 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) | |
36 | 17, 19, 21, 34, 35 | xrlelttrd 11991 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 class class class wbr 4653 ↦ cmpt 4729 ran crn 5115 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 infcinf 8347 0cc0 9936 +∞cpnf 10071 -∞cmnf 10072 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 ℝ+crp 11832 -𝑒cxne 11943 +𝑒 cxad 11944 [,]cicc 12178 distcds 15950 ℝ*𝑠cxrs 16160 ∞Metcxmt 19731 MetOpencmopn 19736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-ec 7744 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-psmet 19738 df-xmet 19739 df-bl 19741 |
This theorem is referenced by: metdscn 22659 |
Copyright terms: Public domain | W3C validator |