![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 11872 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | rexrd 10089 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ℝ*cxr 10073 ℝ+crp 11832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-xr 10078 df-rp 11833 |
This theorem is referenced by: ssblex 22233 metequiv2 22315 metss2lem 22316 methaus 22325 met1stc 22326 met2ndci 22327 metcnp 22346 metcnpi3 22351 metustexhalf 22361 blval2 22367 metuel2 22370 nmoi2 22534 metdcnlem 22639 metdscnlem 22658 metnrmlem2 22663 metnrmlem3 22664 cnheibor 22754 cnllycmp 22755 lebnumlem3 22762 nmoleub2lem 22914 nmhmcn 22920 iscfil2 23064 cfil3i 23067 iscfil3 23071 iscmet3lem2 23090 caubl 23106 caublcls 23107 relcmpcmet 23115 bcthlem2 23122 bcthlem4 23124 bcthlem5 23125 ellimc3 23643 ftc1a 23800 ulmdvlem1 24154 psercnlem2 24178 psercn 24180 pserdvlem2 24182 pserdv 24183 efopn 24404 logccv 24409 efrlim 24696 lgamucov 24764 ftalem3 24801 logexprlim 24950 pntpbnd1a 25274 pntleme 25297 pntlem3 25298 pntleml 25300 ubthlem1 27726 ubthlem2 27727 tpr2rico 29958 xrmulc1cn 29976 omssubadd 30362 sgnmulrp2 30605 ptrecube 33409 poimirlem29 33438 heicant 33444 ftc1anclem6 33490 ftc1anclem7 33491 sstotbnd2 33573 equivtotbnd 33577 totbndbnd 33588 cntotbnd 33595 heibor1lem 33608 heiborlem3 33612 heiborlem6 33615 heiborlem8 33617 supxrge 39554 infrpge 39567 infleinflem1 39586 stoweid 40280 qndenserrnbl 40515 sge0rpcpnf 40638 sge0xaddlem1 40650 |
Copyright terms: Public domain | W3C validator |