MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdstri Structured version   Visualization version   GIF version

Theorem metdstri 22654
Description: A generalization of the triangle inequality to the point-set distance function. Under the usual notation where the same symbol 𝑑 denotes the point-point and point-set distance functions, this theorem would be written 𝑑(𝑎, 𝑆) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑆). (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdstri (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdstri
StepHypRef Expression
1 simprr 796 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐹𝐴) ∈ ℝ)
2 simprl 794 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ∈ ℝ)
3 rexsub 12064 . . . . . . . . . . . 12 (((𝐹𝐴) ∈ ℝ ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) = ((𝐹𝐴) − (𝐴𝐷𝐵)))
41, 2, 3syl2anc 693 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) = ((𝐹𝐴) − (𝐴𝐷𝐵)))
54oveq2d 6666 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))))
6 simpll 790 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
76adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋))
8 simprr 796 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
98adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐵𝑋)
10 simprl 794 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
1110adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐴𝑋)
121, 2resubcld 10458 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) − (𝐴𝐷𝐵)) ∈ ℝ)
132leidd 10594 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ≤ (𝐴𝐷𝐵))
14 xmetsym 22152 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
156, 10, 8, 14syl3anc 1326 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1615adantr 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1716eqcomd 2628 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
181recnd 10068 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐹𝐴) ∈ ℂ)
192recnd 10068 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ∈ ℂ)
2018, 19nncand 10397 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))) = (𝐴𝐷𝐵))
2113, 17, 203brtr4d 4685 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵𝐷𝐴) ≤ ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))))
22 blss2 22209 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) ∧ (((𝐹𝐴) − (𝐴𝐷𝐵)) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ ∧ (𝐵𝐷𝐴) ≤ ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))))) → (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
237, 9, 11, 12, 1, 21, 22syl33anc 1341 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
245, 23eqsstrd 3639 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
2524expr 643 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))))
266adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐷 ∈ (∞Met‘𝑋))
278adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐵𝑋)
28 metdscn.f . . . . . . . . . . . . . . . . . 18 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2928metdsf 22651 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3029adantr 481 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐹:𝑋⟶(0[,]+∞))
3130, 10ffvelrnd 6360 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ (0[,]+∞))
32 elxrge0 12281 . . . . . . . . . . . . . . . 16 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
3332simplbi 476 . . . . . . . . . . . . . . 15 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
3431, 33syl 17 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ ℝ*)
3534adantr 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐹𝐴) ∈ ℝ*)
36 xmetcl 22136 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
376, 10, 8, 36syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ ℝ*)
3837adantr 481 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐴𝐷𝐵) ∈ ℝ*)
3938xnegcld 12130 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → -𝑒(𝐴𝐷𝐵) ∈ ℝ*)
4035, 39xaddcld 12131 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
4140adantrr 753 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
42 pnfxr 10092 . . . . . . . . . . . 12 +∞ ∈ ℝ*
4342a1i 11 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → +∞ ∈ ℝ*)
44 pnfge 11964 . . . . . . . . . . . 12 (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ* → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞)
4541, 44syl 17 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞)
46 ssbl 22228 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) ∧ (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐵(ball‘𝐷)+∞))
4726, 27, 41, 43, 45, 46syl221anc 1337 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐵(ball‘𝐷)+∞))
48 simprr 796 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐹𝐴) = +∞)
4948oveq2d 6666 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴(ball‘𝐷)(𝐹𝐴)) = (𝐴(ball‘𝐷)+∞))
5010adantr 481 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐴𝑋)
51 simprl 794 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴𝐷𝐵) ∈ ℝ)
52 xblpnf 22201 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐵 ∈ (𝐴(ball‘𝐷)+∞) ↔ (𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
5326, 50, 52syl2anc 693 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵 ∈ (𝐴(ball‘𝐷)+∞) ↔ (𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
5427, 51, 53mpbir2and 957 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐵 ∈ (𝐴(ball‘𝐷)+∞))
55 blpnfctr 22241 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵 ∈ (𝐴(ball‘𝐷)+∞)) → (𝐴(ball‘𝐷)+∞) = (𝐵(ball‘𝐷)+∞))
5626, 50, 54, 55syl3anc 1326 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴(ball‘𝐷)+∞) = (𝐵(ball‘𝐷)+∞))
5749, 56eqtr2d 2657 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)(𝐹𝐴)))
5847, 57sseqtrd 3641 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
5958expr 643 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) = +∞ → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))))
6032simprbi 480 . . . . . . . . . . . . 13 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
6131, 60syl 17 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐹𝐴))
62 ge0nemnf 12004 . . . . . . . . . . . 12 (((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)) → (𝐹𝐴) ≠ -∞)
6334, 61, 62syl2anc 693 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≠ -∞)
6434, 63jca 554 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞))
6564adantr 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞))
66 xrnemnf 11951 . . . . . . . . 9 (((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞) ↔ ((𝐹𝐴) ∈ ℝ ∨ (𝐹𝐴) = +∞))
6765, 66sylib 208 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ ∨ (𝐹𝐴) = +∞))
6825, 59, 67mpjaod 396 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
69 pnfnlt 11962 . . . . . . . . . . 11 ((𝐹𝐴) ∈ ℝ* → ¬ +∞ < (𝐹𝐴))
7034, 69syl 17 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ¬ +∞ < (𝐹𝐴))
7170adantr 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → ¬ +∞ < (𝐹𝐴))
7237xnegcld 12130 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → -𝑒(𝐴𝐷𝐵) ∈ ℝ*)
7334, 72xaddcld 12131 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
74 xbln0 22219 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋 ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
756, 8, 73, 74syl3anc 1326 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
76 xposdif 12092 . . . . . . . . . . . . 13 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
7737, 34, 76syl2anc 693 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
7875, 77bitr4d 271 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ (𝐴𝐷𝐵) < (𝐹𝐴)))
79 breq1 4656 . . . . . . . . . . 11 ((𝐴𝐷𝐵) = +∞ → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ +∞ < (𝐹𝐴)))
8078, 79sylan9bb 736 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ +∞ < (𝐹𝐴)))
8180necon1bbid 2833 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (¬ +∞ < (𝐹𝐴) ↔ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = ∅))
8271, 81mpbid 222 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = ∅)
83 0ss 3972 . . . . . . . 8 ∅ ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))
8482, 83syl6eqss 3655 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
85 xmetge0 22149 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
866, 10, 8, 85syl3anc 1326 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐴𝐷𝐵))
87 ge0nemnf 12004 . . . . . . . . . 10 (((𝐴𝐷𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴𝐷𝐵)) → (𝐴𝐷𝐵) ≠ -∞)
8837, 86, 87syl2anc 693 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≠ -∞)
8937, 88jca 554 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ≠ -∞))
90 xrnemnf 11951 . . . . . . . 8 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ≠ -∞) ↔ ((𝐴𝐷𝐵) ∈ ℝ ∨ (𝐴𝐷𝐵) = +∞))
9189, 90sylib 208 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ ℝ ∨ (𝐴𝐷𝐵) = +∞))
9268, 84, 91mpjaodan 827 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
93 sslin 3839 . . . . . 6 ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))))
9492, 93syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))))
95 xrleid 11983 . . . . . . 7 ((𝐹𝐴) ∈ ℝ* → (𝐹𝐴) ≤ (𝐹𝐴))
9634, 95syl 17 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ (𝐹𝐴))
97 simplr 792 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝑆𝑋)
9828metdsge 22652 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
996, 97, 10, 34, 98syl31anc 1329 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
10096, 99mpbid 222 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
101 sseq0 3975 . . . . 5 (((𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ∧ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅)
10294, 100, 101syl2anc 693 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅)
10328metdsge 22652 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐵𝑋) ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅))
1046, 97, 8, 73, 103syl31anc 1329 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅))
105102, 104mpbird 247 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵))
10630, 8ffvelrnd 6360 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ (0[,]+∞))
107 elxrge0 12281 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) ↔ ((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)))
108107simplbi 476 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
109106, 108syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ ℝ*)
110107simprbi 480 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐵))
111106, 110syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐹𝐵))
112 xlesubadd 12093 . . . 4 ((((𝐹𝐴) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹𝐴) ∧ (𝐴𝐷𝐵) ≠ -∞ ∧ 0 ≤ (𝐹𝐵))) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵))))
11334, 37, 109, 61, 88, 111, 112syl33anc 1341 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵))))
114105, 113mpbid 222 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)))
115 xaddcom 12071 . . 3 (((𝐹𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) → ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
116109, 37, 115syl2anc 693 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
117114, 116breqtrd 4679 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  c0 3915   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  infcinf 8347  cr 9935  0cc0 9936  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -𝑒cxne 11943   +𝑒 cxad 11944  [,]cicc 12178  ∞Metcxmt 19731  ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-psmet 19738  df-xmet 19739  df-bl 19741
This theorem is referenced by:  metdsle  22655  metdscnlem  22658  metnrmlem1  22662
  Copyright terms: Public domain W3C validator