MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscnlem Structured version   Visualization version   Unicode version

Theorem metdscnlem 22658
Description: Lemma for metdscn 22659. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
metdscn.j  |-  J  =  ( MetOpen `  D )
metdscn.c  |-  C  =  ( dist `  RR*s
)
metdscn.k  |-  K  =  ( MetOpen `  C )
metdscnlem.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
metdscnlem.2  |-  ( ph  ->  S  C_  X )
metdscnlem.3  |-  ( ph  ->  A  e.  X )
metdscnlem.4  |-  ( ph  ->  B  e.  X )
metdscnlem.5  |-  ( ph  ->  R  e.  RR+ )
metdscnlem.6  |-  ( ph  ->  ( A D B )  <  R )
Assertion
Ref Expression
metdscnlem  |-  ( ph  ->  ( ( F `  A ) +e  -e ( F `  B ) )  < 
R )
Distinct variable groups:    x, y, A    x, D, y    y, J    x, B, y    x, S, y    x, X, y
Allowed substitution hints:    ph( x, y)    C( x, y)    R( x, y)    F( x, y)    J( x)    K( x, y)

Proof of Theorem metdscnlem
StepHypRef Expression
1 metdscnlem.1 . . . . . 6  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2 metdscnlem.2 . . . . . 6  |-  ( ph  ->  S  C_  X )
3 metdscn.f . . . . . . 7  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
43metdsf 22651 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
51, 2, 4syl2anc 693 . . . . 5  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
6 metdscnlem.3 . . . . 5  |-  ( ph  ->  A  e.  X )
75, 6ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  ( 0 [,] +oo ) )
8 elxrge0 12281 . . . . 5  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  <->  ( ( F `
 A )  e. 
RR*  /\  0  <_  ( F `  A ) ) )
98simplbi 476 . . . 4  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  ( F `
 A )  e. 
RR* )
107, 9syl 17 . . 3  |-  ( ph  ->  ( F `  A
)  e.  RR* )
11 metdscnlem.4 . . . . . 6  |-  ( ph  ->  B  e.  X )
125, 11ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( F `  B
)  e.  ( 0 [,] +oo ) )
13 elxrge0 12281 . . . . . 6  |-  ( ( F `  B )  e.  ( 0 [,] +oo )  <->  ( ( F `
 B )  e. 
RR*  /\  0  <_  ( F `  B ) ) )
1413simplbi 476 . . . . 5  |-  ( ( F `  B )  e.  ( 0 [,] +oo )  ->  ( F `
 B )  e. 
RR* )
1512, 14syl 17 . . . 4  |-  ( ph  ->  ( F `  B
)  e.  RR* )
1615xnegcld 12130 . . 3  |-  ( ph  -> 
-e ( F `
 B )  e. 
RR* )
1710, 16xaddcld 12131 . 2  |-  ( ph  ->  ( ( F `  A ) +e  -e ( F `  B ) )  e. 
RR* )
18 xmetcl 22136 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  e.  RR* )
191, 6, 11, 18syl3anc 1326 . 2  |-  ( ph  ->  ( A D B )  e.  RR* )
20 metdscnlem.5 . . 3  |-  ( ph  ->  R  e.  RR+ )
2120rpxrd 11873 . 2  |-  ( ph  ->  R  e.  RR* )
223metdstri 22654 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  A
)  <_  ( ( A D B ) +e ( F `  B ) ) )
231, 2, 6, 11, 22syl22anc 1327 . . 3  |-  ( ph  ->  ( F `  A
)  <_  ( ( A D B ) +e ( F `  B ) ) )
248simprbi 480 . . . . 5  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  0  <_ 
( F `  A
) )
257, 24syl 17 . . . 4  |-  ( ph  ->  0  <_  ( F `  A ) )
2613simprbi 480 . . . . . 6  |-  ( ( F `  B )  e.  ( 0 [,] +oo )  ->  0  <_ 
( F `  B
) )
2712, 26syl 17 . . . . 5  |-  ( ph  ->  0  <_  ( F `  B ) )
28 ge0nemnf 12004 . . . . 5  |-  ( ( ( F `  B
)  e.  RR*  /\  0  <_  ( F `  B
) )  ->  ( F `  B )  =/= -oo )
2915, 27, 28syl2anc 693 . . . 4  |-  ( ph  ->  ( F `  B
)  =/= -oo )
30 xmetge0 22149 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  0  <_  ( A D B ) )
311, 6, 11, 30syl3anc 1326 . . . 4  |-  ( ph  ->  0  <_  ( A D B ) )
32 xlesubadd 12093 . . . 4  |-  ( ( ( ( F `  A )  e.  RR*  /\  ( F `  B
)  e.  RR*  /\  ( A D B )  e. 
RR* )  /\  (
0  <_  ( F `  A )  /\  ( F `  B )  =/= -oo  /\  0  <_ 
( A D B ) ) )  -> 
( ( ( F `
 A ) +e  -e ( F `  B ) )  <_  ( A D B )  <->  ( F `  A )  <_  (
( A D B ) +e ( F `  B ) ) ) )
3310, 15, 19, 25, 29, 31, 32syl33anc 1341 . . 3  |-  ( ph  ->  ( ( ( F `
 A ) +e  -e ( F `  B ) )  <_  ( A D B )  <->  ( F `  A )  <_  (
( A D B ) +e ( F `  B ) ) ) )
3423, 33mpbird 247 . 2  |-  ( ph  ->  ( ( F `  A ) +e  -e ( F `  B ) )  <_ 
( A D B ) )
35 metdscnlem.6 . 2  |-  ( ph  ->  ( A D B )  <  R )
3617, 19, 21, 34, 35xrlelttrd 11991 1  |-  ( ph  ->  ( ( F `  A ) +e  -e ( F `  B ) )  < 
R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   0cc0 9936   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832    -ecxne 11943   +ecxad 11944   [,]cicc 12178   distcds 15950   RR*scxrs 16160   *Metcxmt 19731   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-psmet 19738  df-xmet 19739  df-bl 19741
This theorem is referenced by:  metdscn  22659
  Copyright terms: Public domain W3C validator