MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moddi Structured version   Visualization version   GIF version

Theorem moddi 12738
Description: Distribute multiplication over a modulo operation. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
moddi ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))

Proof of Theorem moddi
StepHypRef Expression
1 rpcn 11841 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
213ad2ant1 1082 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
3 recn 10026 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
433ad2ant2 1083 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
5 rpre 11839 . . . . . . . 8 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
65adantl 482 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
7 refldivcl 12624 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℝ)
86, 7remulcld 10070 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℝ)
98recnd 10068 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
1093adant1 1079 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
112, 4, 10subdid 10486 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))))
12 rpcnne0 11850 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
13123ad2ant3 1084 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
14 rpcnne0 11850 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
15143ad2ant1 1082 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
16 divcan5 10727 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐵) / (𝐴 · 𝐶)) = (𝐵 / 𝐶))
174, 13, 15, 16syl3anc 1326 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) / (𝐴 · 𝐶)) = (𝐵 / 𝐶))
1817fveq2d 6195 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))) = (⌊‘(𝐵 / 𝐶)))
1918oveq2d 6666 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))))
20 rpcn 11841 . . . . . . 7 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
21203ad2ant3 1084 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
22 rerpdivcl 11861 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 / 𝐶) ∈ ℝ)
23 reflcl 12597 . . . . . . . . 9 ((𝐵 / 𝐶) ∈ ℝ → (⌊‘(𝐵 / 𝐶)) ∈ ℝ)
2423recnd 10068 . . . . . . . 8 ((𝐵 / 𝐶) ∈ ℝ → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
2522, 24syl 17 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
26253adant1 1079 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
272, 21, 26mulassd 10063 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))) = (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))))
2819, 27eqtr2d 2657 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))))
2928oveq2d 6666 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
3011, 29eqtrd 2656 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
31 modval 12670 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
32313adant1 1079 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
3332oveq2d 6666 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
34 rpre 11839 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
35 remulcl 10021 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
3634, 35sylan 488 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
37363adant3 1081 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ)
38 rpmulcl 11855 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℝ+)
39383adant2 1080 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℝ+)
40 modval 12670 . . 3 (((𝐴 · 𝐵) ∈ ℝ ∧ (𝐴 · 𝐶) ∈ ℝ+) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4137, 39, 40syl2anc 693 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4230, 33, 413eqtr4d 2666 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   · cmul 9941  cmin 10266   / cdiv 10684  +crp 11832  cfl 12591   mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669
This theorem is referenced by:  dirkertrigeq  40318
  Copyright terms: Public domain W3C validator