| Step | Hyp | Ref
| Expression |
| 1 | | mpfind.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑄) |
| 2 | | mpfind.cq |
. . . . 5
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
| 3 | 1, 2 | syl6eleq 2711 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 4 | 2 | mpfrcl 19518 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
| 5 | 1, 4 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
| 6 | | eqid 2622 |
. . . . . . . . 9
⊢ ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅) |
| 7 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝐼 mPoly (𝑆 ↾s 𝑅)) = (𝐼 mPoly (𝑆 ↾s 𝑅)) |
| 8 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) |
| 9 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑆 ↑s
(𝐵
↑𝑚 𝐼)) = (𝑆 ↑s (𝐵 ↑𝑚
𝐼)) |
| 10 | | mpfind.cb |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑆) |
| 11 | 6, 7, 8, 9, 10 | evlsrhm 19521 |
. . . . . . . 8
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 12 | 5, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 13 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) = (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
| 14 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘(𝑆
↑s (𝐵 ↑𝑚 𝐼))) = (Base‘(𝑆 ↑s
(𝐵
↑𝑚 𝐼))) |
| 15 | 13, 14 | rhmf 18726 |
. . . . . . 7
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚
𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 16 | 12, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 17 | | ffn 6045 |
. . . . . 6
⊢ (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 19 | | fvelrnb 6243 |
. . . . 5
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)) |
| 20 | 18, 19 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)) |
| 21 | 3, 20 | mpbid 222 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴) |
| 22 | | ffun 6048 |
. . . . . . . 8
⊢ (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼))) → Fun ((𝐼 evalSub 𝑆)‘𝑅)) |
| 23 | 16, 22 | syl 17 |
. . . . . . 7
⊢ (𝜑 → Fun ((𝐼 evalSub 𝑆)‘𝑅)) |
| 24 | 23 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → Fun ((𝐼 evalSub 𝑆)‘𝑅)) |
| 25 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘(𝑆
↾s 𝑅)) =
(Base‘(𝑆
↾s 𝑅)) |
| 26 | | eqid 2622 |
. . . . . . 7
⊢ (𝐼 mVar (𝑆 ↾s 𝑅)) = (𝐼 mVar (𝑆 ↾s 𝑅)) |
| 27 | | eqid 2622 |
. . . . . . 7
⊢
(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (+g‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
| 28 | | eqid 2622 |
. . . . . . 7
⊢
(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (.r‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
| 29 | | eqid 2622 |
. . . . . . 7
⊢
(algSc‘(𝐼
mPoly (𝑆
↾s 𝑅))) =
(algSc‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
| 30 | 5 | simp1d 1073 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ V) |
| 31 | 5 | simp2d 1074 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ CRing) |
| 32 | 5 | simp3d 1075 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| 33 | 8 | subrgcrng 18784 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑆 ↾s 𝑅) ∈ CRing) |
| 34 | 31, 32, 33 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ CRing) |
| 35 | | crngring 18558 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ↾s 𝑅) ∈ CRing → (𝑆 ↾s 𝑅) ∈ Ring) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ Ring) |
| 37 | 7 | mplring 19452 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ V ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
| 38 | 30, 36, 37 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
| 39 | 38 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
| 40 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 41 | | elpreima 6337 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
| 42 | 18, 41 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
| 43 | 42 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
| 44 | 40, 43 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
| 45 | 44 | simpld 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 46 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 47 | | elpreima 6337 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
| 48 | 18, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
| 49 | 48 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
| 50 | 46, 49 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
| 51 | 50 | simpld 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 52 | 13, 27 | ringacl 18578 |
. . . . . . . . . 10
⊢ (((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 53 | 39, 45, 51, 52 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 54 | | rhmghm 18725 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚
𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 55 | 12, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 56 | 55 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 57 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(+g‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼))) =
(+g‘(𝑆
↑s (𝐵 ↑𝑚 𝐼))) |
| 58 | 13, 27, 57 | ghmlin 17665 |
. . . . . . . . . . . 12
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑𝑚
𝐼))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 59 | 56, 45, 51, 58 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 60 | 31 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑆 ∈ CRing) |
| 61 | | ovexd 6680 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝐵 ↑𝑚 𝐼) ∈ V) |
| 62 | 16 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 63 | 62, 45 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 64 | 62, 51 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 65 | | mpfind.cp |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑆) |
| 66 | 9, 14, 60, 61, 63, 64, 65, 57 | pwsplusgval 16150 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 67 | 59, 66 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 68 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝜑) |
| 69 | 18 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 70 | | fnfvelrn 6356 |
. . . . . . . . . . . . . 14
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 71 | 69, 45, 70 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 72 | 71, 2 | syl6eleqr 2712 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄) |
| 73 | 23 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → Fun ((𝐼 evalSub 𝑆)‘𝑅)) |
| 74 | | fvimacnvi 6331 |
. . . . . . . . . . . . 13
⊢ ((Fun
((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) |
| 75 | 73, 40, 74 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) |
| 76 | 72, 75 | jca 554 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
| 77 | | fnfvelrn 6356 |
. . . . . . . . . . . . . 14
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 78 | 69, 51, 77 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 79 | 78, 2 | syl6eleqr 2712 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄) |
| 80 | | fvimacnvi 6331 |
. . . . . . . . . . . . 13
⊢ ((Fun
((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}) |
| 81 | 73, 46, 80 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}) |
| 82 | 79, 81 | jca 554 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
| 83 | | fvex 6201 |
. . . . . . . . . . . 12
⊢ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ V |
| 84 | | fvex 6201 |
. . . . . . . . . . . 12
⊢ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ V |
| 85 | | eleq1 2689 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ 𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄)) |
| 86 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑓 ∈ V |
| 87 | | mpfind.wc |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) |
| 88 | 86, 87 | elab 3350 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ {𝑥 ∣ 𝜓} ↔ 𝜏) |
| 89 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ {𝑥 ∣ 𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
| 90 | 88, 89 | syl5bbr 274 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝜏 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
| 91 | 85, 90 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → ((𝑓 ∈ 𝑄 ∧ 𝜏) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
| 92 | | eleq1 2689 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ 𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄)) |
| 93 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑔 ∈ V |
| 94 | | mpfind.wd |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) |
| 95 | 93, 94 | elab 3350 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ {𝑥 ∣ 𝜓} ↔ 𝜂) |
| 96 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ {𝑥 ∣ 𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
| 97 | 95, 96 | syl5bbr 274 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝜂 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
| 98 | 92, 97 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → ((𝑔 ∈ 𝑄 ∧ 𝜂) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
| 99 | 91, 98 | bi2anan9 917 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂)) ↔ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})))) |
| 100 | 99 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) ↔ (𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))))) |
| 101 | | ovex 6678 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∘𝑓
+ 𝑔) ∈ V |
| 102 | | mpfind.we |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 ∘𝑓 + 𝑔) → (𝜓 ↔ 𝜁)) |
| 103 | 101, 102 | elab 3350 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∘𝑓
+ 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ 𝜁) |
| 104 | | oveq12 6659 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓 ∘𝑓 + 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 105 | 104 | eleq1d 2686 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓 ∘𝑓 + 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
| 106 | 103, 105 | syl5bbr 274 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜁 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
| 107 | 100, 106 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 108 | | mpfind.ad |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) |
| 109 | 83, 84, 107, 108 | vtocl2 3261 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 110 | 68, 76, 82, 109 | syl12anc 1324 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 111 | 67, 110 | eqeltrd 2701 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 112 | | elpreima 6337 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 113 | 18, 112 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 114 | 113 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 115 | 53, 111, 114 | mpbir2and 957 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 116 | 115 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 117 | 13, 28 | ringcl 18561 |
. . . . . . . . . 10
⊢ (((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 118 | 39, 45, 51, 117 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 119 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘(𝐼
mPoly (𝑆
↾s 𝑅))) =
(mulGrp‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
| 120 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘(𝑆
↑s (𝐵 ↑𝑚 𝐼))) = (mulGrp‘(𝑆 ↑s
(𝐵
↑𝑚 𝐼))) |
| 121 | 119, 120 | rhmmhm 18722 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚
𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼))))) |
| 122 | 12, 121 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼))))) |
| 123 | 122 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼))))) |
| 124 | 119, 13 | mgpbas 18495 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) =
(Base‘(mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 125 | 119, 28 | mgpplusg 18493 |
. . . . . . . . . . . . 13
⊢
(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅))) =
(+g‘(mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 126 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(.r‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼))) =
(.r‘(𝑆
↑s (𝐵 ↑𝑚 𝐼))) |
| 127 | 120, 126 | mgpplusg 18493 |
. . . . . . . . . . . . 13
⊢
(.r‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼))) =
(+g‘(mulGrp‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) |
| 128 | 124, 125,
127 | mhmlin 17342 |
. . . . . . . . . . . 12
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 129 | 123, 45, 51, 128 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 130 | | mpfind.ct |
. . . . . . . . . . . 12
⊢ · =
(.r‘𝑆) |
| 131 | 9, 14, 60, 61, 63, 64, 130, 126 | pwsmulrval 16151 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆 ↑s (𝐵 ↑𝑚
𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 ·
(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 132 | 129, 131 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 ·
(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 133 | | ovex 6678 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∘𝑓
·
𝑔) ∈
V |
| 134 | | mpfind.wf |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 ∘𝑓 · 𝑔) → (𝜓 ↔ 𝜎)) |
| 135 | 133, 134 | elab 3350 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∘𝑓
·
𝑔) ∈ {𝑥 ∣ 𝜓} ↔ 𝜎) |
| 136 | | oveq12 6659 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓 ∘𝑓 · 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 ·
(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 137 | 136 | eleq1d 2686 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓 ∘𝑓 · 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 ·
(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
| 138 | 135, 137 | syl5bbr 274 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜎 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 ·
(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
| 139 | 100, 138 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 ·
(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 140 | | mpfind.mu |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) |
| 141 | 83, 84, 139, 140 | vtocl2 3261 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 ·
(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 142 | 68, 76, 82, 141 | syl12anc 1324 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘𝑓 ·
(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 143 | 132, 142 | eqeltrd 2701 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 144 | | elpreima 6337 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 145 | 18, 144 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 146 | 145 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 147 | 118, 143,
146 | mpbir2and 957 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 148 | 147 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 149 | 7 | mplassa 19454 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ V ∧ (𝑆 ↾s 𝑅) ∈ CRing) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ AssAlg) |
| 150 | 30, 34, 149 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ AssAlg) |
| 151 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(Scalar‘(𝐼
mPoly (𝑆
↾s 𝑅))) =
(Scalar‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
| 152 | 29, 151 | asclrhm 19342 |
. . . . . . . . . . . . 13
⊢ ((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ AssAlg → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) RingHom (𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 153 | 150, 152 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) RingHom (𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 154 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 155 | 154, 13 | rhmf 18726 |
. . . . . . . . . . . 12
⊢
((algSc‘(𝐼
mPoly (𝑆
↾s 𝑅)))
∈ ((Scalar‘(𝐼
mPoly (𝑆
↾s 𝑅)))
RingHom (𝐼 mPoly (𝑆 ↾s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 156 | 153, 155 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 157 | 156 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 158 | 7, 30, 34 | mplsca 19445 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ↾s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 159 | 158 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘(𝑆 ↾s 𝑅)) =
(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 160 | 159 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑖 ∈ (Base‘(𝑆 ↾s 𝑅)) ↔ 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))))) |
| 161 | 160 | biimpa 501 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 162 | 157, 161 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 163 | 30 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝐼 ∈ V) |
| 164 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑆 ∈ CRing) |
| 165 | 32 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑅 ∈ (SubRing‘𝑆)) |
| 166 | 10 | subrgss 18781 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 167 | 32, 166 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ⊆ 𝐵) |
| 168 | 8, 10 | ressbas2 15931 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
| 169 | 167, 168 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
| 170 | 169 | eleq2d 2687 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑖 ∈ 𝑅 ↔ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅)))) |
| 171 | 170 | biimpar 502 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑖 ∈ 𝑅) |
| 172 | 6, 7, 8, 10, 29, 163, 164, 165, 171 | evlssca 19522 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) = ((𝐵 ↑𝑚 𝐼) × {𝑖})) |
| 173 | | mpfind.co |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑅) → 𝜒) |
| 174 | 173 | ralrimiva 2966 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑓 ∈ 𝑅 𝜒) |
| 175 | | ovex 6678 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ↑𝑚
𝐼) ∈
V |
| 176 | | snex 4908 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑓} ∈ V |
| 177 | 175, 176 | xpex 6962 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ↑𝑚
𝐼) × {𝑓}) ∈ V |
| 178 | | mpfind.wa |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ((𝐵 ↑𝑚 𝐼) × {𝑓}) → (𝜓 ↔ 𝜒)) |
| 179 | 177, 178 | elab 3350 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ↑𝑚
𝐼) × {𝑓}) ∈ {𝑥 ∣ 𝜓} ↔ 𝜒) |
| 180 | | sneq 4187 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑖 → {𝑓} = {𝑖}) |
| 181 | 180 | xpeq2d 5139 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑖 → ((𝐵 ↑𝑚 𝐼) × {𝑓}) = ((𝐵 ↑𝑚 𝐼) × {𝑖})) |
| 182 | 181 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑖 → (((𝐵 ↑𝑚 𝐼) × {𝑓}) ∈ {𝑥 ∣ 𝜓} ↔ ((𝐵 ↑𝑚 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓})) |
| 183 | 179, 182 | syl5bbr 274 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑖 → (𝜒 ↔ ((𝐵 ↑𝑚 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓})) |
| 184 | 183 | cbvralv 3171 |
. . . . . . . . . . . . 13
⊢
(∀𝑓 ∈
𝑅 𝜒 ↔ ∀𝑖 ∈ 𝑅 ((𝐵 ↑𝑚 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
| 185 | 174, 184 | sylib 208 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑖 ∈ 𝑅 ((𝐵 ↑𝑚 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
| 186 | 185 | r19.21bi 2932 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑅) → ((𝐵 ↑𝑚 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
| 187 | 171, 186 | syldan 487 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((𝐵 ↑𝑚 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
| 188 | 172, 187 | eqeltrd 2701 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 189 | | elpreima 6337 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 190 | 18, 189 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 191 | 190 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 192 | 162, 188,
191 | mpbir2and 957 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 193 | 192 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 194 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ V) |
| 195 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 ↾s 𝑅) ∈ Ring) |
| 196 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
| 197 | 7, 26, 13, 194, 195, 196 | mvrcl 19449 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 198 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑆 ∈ CRing) |
| 199 | 32 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑅 ∈ (SubRing‘𝑆)) |
| 200 | 6, 26, 8, 10, 194, 198, 199, 196 | evlsvar 19523 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) = (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑖))) |
| 201 | | mpfind.pr |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐼) → 𝜃) |
| 202 | 175 | mptex 6486 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑓)) ∈ V |
| 203 | | mpfind.wb |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) |
| 204 | 202, 203 | elab 3350 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓} ↔ 𝜃) |
| 205 | 201, 204 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓}) |
| 206 | 205 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑓 ∈ 𝐼 (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓}) |
| 207 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑖 → (𝑔‘𝑓) = (𝑔‘𝑖)) |
| 208 | 207 | mpteq2dv 4745 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑖 → (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑓)) = (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑖))) |
| 209 | 208 | eleq1d 2686 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑖 → ((𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓} ↔ (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓})) |
| 210 | 209 | cbvralv 3171 |
. . . . . . . . . . . 12
⊢
(∀𝑓 ∈
𝐼 (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓} ↔ ∀𝑖 ∈ 𝐼 (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 211 | 206, 210 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑖 ∈ 𝐼 (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 212 | 211 | r19.21bi 2932 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 213 | 200, 212 | eqeltrd 2701 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 214 | | elpreima 6337 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 215 | 18, 214 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 216 | 215 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 217 | 197, 213,
216 | mpbir2and 957 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 218 | 217 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ 𝑖 ∈ 𝐼) → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 219 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 220 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → 𝐼 ∈ V) |
| 221 | 34 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (𝑆 ↾s 𝑅) ∈ CRing) |
| 222 | 25, 26, 7, 27, 28, 29, 13, 116, 148, 193, 218, 219, 220, 221 | mplind 19502 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → 𝑦 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 223 | | fvimacnvi 6331 |
. . . . . 6
⊢ ((Fun
((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑦 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥 ∣ 𝜓}) |
| 224 | 24, 222, 223 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥 ∣ 𝜓}) |
| 225 | | eleq1 2689 |
. . . . 5
⊢ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥 ∣ 𝜓} ↔ 𝐴 ∈ {𝑥 ∣ 𝜓})) |
| 226 | 224, 225 | syl5ibcom 235 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → 𝐴 ∈ {𝑥 ∣ 𝜓})) |
| 227 | 226 | rexlimdva 3031 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → 𝐴 ∈ {𝑥 ∣ 𝜓})) |
| 228 | 21, 227 | mpd 15 |
. 2
⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
| 229 | | mpfind.wg |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) |
| 230 | 229 | elabg 3351 |
. . 3
⊢ (𝐴 ∈ 𝑄 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜌)) |
| 231 | 1, 230 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜌)) |
| 232 | 228, 231 | mpbid 222 |
1
⊢ (𝜑 → 𝜌) |