| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nconnsubb | Structured version Visualization version Unicode version | ||
| Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| nconnsubb.2 |
|
| nconnsubb.3 |
|
| nconnsubb.4 |
|
| nconnsubb.5 |
|
| nconnsubb.6 |
|
| nconnsubb.7 |
|
| nconnsubb.8 |
|
| nconnsubb.9 |
|
| Ref | Expression |
|---|---|
| nconnsubb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nconnsubb.9 |
. 2
| |
| 2 | nconnsubb.2 |
. . . 4
| |
| 3 | nconnsubb.3 |
. . . 4
| |
| 4 | connsuba 21223 |
. . . 4
| |
| 5 | 2, 3, 4 | syl2anc 693 |
. . 3
|
| 6 | nconnsubb.6 |
. . . . 5
| |
| 7 | nconnsubb.7 |
. . . . 5
| |
| 8 | nconnsubb.8 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3jca 1242 |
. . . 4
|
| 10 | nconnsubb.4 |
. . . . 5
| |
| 11 | nconnsubb.5 |
. . . . 5
| |
| 12 | ineq1 3807 |
. . . . . . . . 9
| |
| 13 | 12 | neeq1d 2853 |
. . . . . . . 8
|
| 14 | ineq1 3807 |
. . . . . . . . . 10
| |
| 15 | 14 | ineq1d 3813 |
. . . . . . . . 9
|
| 16 | 15 | eqeq1d 2624 |
. . . . . . . 8
|
| 17 | 13, 16 | 3anbi13d 1401 |
. . . . . . 7
|
| 18 | uneq1 3760 |
. . . . . . . . 9
| |
| 19 | 18 | ineq1d 3813 |
. . . . . . . 8
|
| 20 | 19 | neeq1d 2853 |
. . . . . . 7
|
| 21 | 17, 20 | imbi12d 334 |
. . . . . 6
|
| 22 | ineq1 3807 |
. . . . . . . . 9
| |
| 23 | 22 | neeq1d 2853 |
. . . . . . . 8
|
| 24 | ineq2 3808 |
. . . . . . . . . 10
| |
| 25 | 24 | ineq1d 3813 |
. . . . . . . . 9
|
| 26 | 25 | eqeq1d 2624 |
. . . . . . . 8
|
| 27 | 23, 26 | 3anbi23d 1402 |
. . . . . . 7
|
| 28 | sseqin2 3817 |
. . . . . . . . 9
| |
| 29 | 28 | necon3bbii 2841 |
. . . . . . . 8
|
| 30 | uneq2 3761 |
. . . . . . . . . 10
| |
| 31 | 30 | sseq2d 3633 |
. . . . . . . . 9
|
| 32 | 31 | notbid 308 |
. . . . . . . 8
|
| 33 | 29, 32 | syl5bbr 274 |
. . . . . . 7
|
| 34 | 27, 33 | imbi12d 334 |
. . . . . 6
|
| 35 | 21, 34 | rspc2v 3322 |
. . . . 5
|
| 36 | 10, 11, 35 | syl2anc 693 |
. . . 4
|
| 37 | 9, 36 | mpid 44 |
. . 3
|
| 38 | 5, 37 | sylbid 230 |
. 2
|
| 39 | 1, 38 | mt2d 131 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-en 7956 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-conn 21215 |
| This theorem is referenced by: iunconnlem 21230 clsconn 21233 reconnlem1 22629 ordtconnlem1 29970 |
| Copyright terms: Public domain | W3C validator |