MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmofval Structured version   Visualization version   GIF version

Theorem nmofval 22518
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmofval ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
Distinct variable groups:   𝑓,𝑟,𝑥,𝐿   𝑓,𝑀,𝑟,𝑥   𝑆,𝑓,𝑟,𝑥   𝑇,𝑓,𝑟,𝑥   𝑓,𝑉,𝑟,𝑥   𝑁,𝑟,𝑥
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem nmofval
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . 2 𝑁 = (𝑆 normOp 𝑇)
2 oveq12 6659 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇))
3 simpl 473 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑠 = 𝑆)
43fveq2d 6195 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = (Base‘𝑆))
5 nmofval.2 . . . . . . . 8 𝑉 = (Base‘𝑆)
64, 5syl6eqr 2674 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝑉)
7 simpr 477 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑡 = 𝑇)
87fveq2d 6195 . . . . . . . . . 10 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑡) = (norm‘𝑇))
9 nmofval.4 . . . . . . . . . 10 𝑀 = (norm‘𝑇)
108, 9syl6eqr 2674 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑡) = 𝑀)
1110fveq1d 6193 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → ((norm‘𝑡)‘(𝑓𝑥)) = (𝑀‘(𝑓𝑥)))
123fveq2d 6195 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑠) = (norm‘𝑆))
13 nmofval.3 . . . . . . . . . . 11 𝐿 = (norm‘𝑆)
1412, 13syl6eqr 2674 . . . . . . . . . 10 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑠) = 𝐿)
1514fveq1d 6193 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → ((norm‘𝑠)‘𝑥) = (𝐿𝑥))
1615oveq2d 6666 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑟 · ((norm‘𝑠)‘𝑥)) = (𝑟 · (𝐿𝑥)))
1711, 16breq12d 4666 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))))
186, 17raleqbidv 3152 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))))
1918rabbidv 3189 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))} = {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))})
2019infeq1d 8383 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
212, 20mpteq12dv 4733 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
22 df-nmo 22512 . . 3 normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
23 eqid 2622 . . . . 5 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
24 ssrab2 3687 . . . . . . 7 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ (0[,)+∞)
25 icossxr 12258 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
2624, 25sstri 3612 . . . . . 6 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ*
27 infxrcl 12163 . . . . . 6 ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ∈ ℝ*)
2826, 27mp1i 13 . . . . 5 (𝑓 ∈ (𝑆 GrpHom 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ∈ ℝ*)
2923, 28fmpti 6383 . . . 4 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ*
30 ovex 6678 . . . 4 (𝑆 GrpHom 𝑇) ∈ V
31 xrex 11829 . . . 4 * ∈ V
32 fex2 7121 . . . 4 (((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ* ∧ (𝑆 GrpHom 𝑇) ∈ V ∧ ℝ* ∈ V) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) ∈ V)
3329, 30, 31, 32mp3an 1424 . . 3 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) ∈ V
3421, 22, 33ovmpt2a 6791 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
351, 34syl5eq 2668 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  infcinf 8347  0cc0 9936   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  [,)cico 12177  Basecbs 15857   GrpHom cghm 17657  normcnm 22381  NrmGrpcngp 22382   normOp cnmo 22509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181  df-nmo 22512
This theorem is referenced by:  nmoval  22519  nmof  22523
  Copyright terms: Public domain W3C validator