MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmofval Structured version   Visualization version   Unicode version

Theorem nmofval 22518
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
nmofval.2  |-  V  =  ( Base `  S
)
nmofval.3  |-  L  =  ( norm `  S
)
nmofval.4  |-  M  =  ( norm `  T
)
Assertion
Ref Expression
nmofval  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  N  =  ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  <  ) ) )
Distinct variable groups:    f, r, x, L    f, M, r, x    S, f, r, x    T, f, r, x    f, V, r, x    N, r, x
Allowed substitution hint:    N( f)

Proof of Theorem nmofval
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . 2  |-  N  =  ( S normOp T )
2 oveq12 6659 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s  GrpHom  t )  =  ( S  GrpHom  T ) )
3 simpl 473 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  s  =  S )
43fveq2d 6195 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( Base `  s
)  =  ( Base `  S ) )
5 nmofval.2 . . . . . . . 8  |-  V  =  ( Base `  S
)
64, 5syl6eqr 2674 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( Base `  s
)  =  V )
7 simpr 477 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  t  =  T )  ->  t  =  T )
87fveq2d 6195 . . . . . . . . . 10  |-  ( ( s  =  S  /\  t  =  T )  ->  ( norm `  t
)  =  ( norm `  T ) )
9 nmofval.4 . . . . . . . . . 10  |-  M  =  ( norm `  T
)
108, 9syl6eqr 2674 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( norm `  t
)  =  M )
1110fveq1d 6193 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( norm `  t
) `  ( f `  x ) )  =  ( M `  (
f `  x )
) )
123fveq2d 6195 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  t  =  T )  ->  ( norm `  s
)  =  ( norm `  S ) )
13 nmofval.3 . . . . . . . . . . 11  |-  L  =  ( norm `  S
)
1412, 13syl6eqr 2674 . . . . . . . . . 10  |-  ( ( s  =  S  /\  t  =  T )  ->  ( norm `  s
)  =  L )
1514fveq1d 6193 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( norm `  s
) `  x )  =  ( L `  x ) )
1615oveq2d 6666 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( r  x.  (
( norm `  s ) `  x ) )  =  ( r  x.  ( L `  x )
) )
1711, 16breq12d 4666 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( ( norm `  t ) `  (
f `  x )
)  <_  ( r  x.  ( ( norm `  s
) `  x )
)  <->  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) ) )
186, 17raleqbidv 3152 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. x  e.  ( Base `  s
) ( ( norm `  t ) `  (
f `  x )
)  <_  ( r  x.  ( ( norm `  s
) `  x )
)  <->  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) ) )
1918rabbidv 3189 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  { r  e.  ( 0 [,) +oo )  |  A. x  e.  (
Base `  s )
( ( norm `  t
) `  ( f `  x ) )  <_ 
( r  x.  (
( norm `  s ) `  x ) ) }  =  { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } )
2019infeq1d 8383 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  -> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  ( Base `  s
) ( ( norm `  t ) `  (
f `  x )
)  <_  ( r  x.  ( ( norm `  s
) `  x )
) } ,  RR* ,  <  )  = inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  <  ) )
212, 20mpteq12dv 4733 . . 3  |-  ( ( s  =  S  /\  t  =  T )  ->  ( f  e.  ( s  GrpHom  t )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  (
Base `  s )
( ( norm `  t
) `  ( f `  x ) )  <_ 
( r  x.  (
( norm `  s ) `  x ) ) } ,  RR* ,  <  )
)  =  ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  <  ) ) )
22 df-nmo 22512 . . 3  |-  normOp  =  ( s  e. NrmGrp ,  t  e. NrmGrp  |->  ( f  e.  ( s  GrpHom  t )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  (
Base `  s )
( ( norm `  t
) `  ( f `  x ) )  <_ 
( r  x.  (
( norm `  s ) `  x ) ) } ,  RR* ,  <  )
) )
23 eqid 2622 . . . . 5  |-  ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  <  ) )  =  ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  <  ) )
24 ssrab2 3687 . . . . . . 7  |-  { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) }  C_  (
0 [,) +oo )
25 icossxr 12258 . . . . . . 7  |-  ( 0 [,) +oo )  C_  RR*
2624, 25sstri 3612 . . . . . 6  |-  { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) }  C_  RR*
27 infxrcl 12163 . . . . . 6  |-  ( { r  e.  ( 0 [,) +oo )  | 
A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) }  C_  RR* 
-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  <  )  e.  RR* )
2826, 27mp1i 13 . . . . 5  |-  ( f  e.  ( S  GrpHom  T )  -> inf ( {
r  e.  ( 0 [,) +oo )  | 
A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  <  )  e. 
RR* )
2923, 28fmpti 6383 . . . 4  |-  ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  <  ) ) : ( S  GrpHom  T ) -->
RR*
30 ovex 6678 . . . 4  |-  ( S 
GrpHom  T )  e.  _V
31 xrex 11829 . . . 4  |-  RR*  e.  _V
32 fex2 7121 . . . 4  |-  ( ( ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  <  ) ) : ( S  GrpHom  T ) --> RR*  /\  ( S 
GrpHom  T )  e.  _V  /\ 
RR*  e.  _V )  ->  ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  <  ) )  e.  _V )
3329, 30, 31, 32mp3an 1424 . . 3  |-  ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  <  ) )  e. 
_V
3421, 22, 33ovmpt2a 6791 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( S normOp T )  =  ( f  e.  ( S 
GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  | 
A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  <  ) ) )
351, 34syl5eq 2668 1  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  N  =  ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   0cc0 9936    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177   Basecbs 15857    GrpHom cghm 17657   normcnm 22381  NrmGrpcngp 22382   normOpcnmo 22509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181  df-nmo 22512
This theorem is referenced by:  nmoval  22519  nmof  22523
  Copyright terms: Public domain W3C validator