MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelimcl Structured version   Visualization version   GIF version

Theorem oelimcl 7680
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oelimcl ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴𝑜 𝐵))

Proof of Theorem oelimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3732 . . . 4 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ On)
2 limelon 5788 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
3 oecl 7617 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
41, 2, 3syl2an 494 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴𝑜 𝐵) ∈ On)
5 eloni 5733 . . 3 ((𝐴𝑜 𝐵) ∈ On → Ord (𝐴𝑜 𝐵))
64, 5syl 17 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴𝑜 𝐵))
71adantr 481 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐴 ∈ On)
82adantl 482 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐵 ∈ On)
9 dif20el 7585 . . . 4 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴)
109adantr 481 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ 𝐴)
11 oen0 7666 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐵))
127, 8, 10, 11syl21anc 1325 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ (𝐴𝑜 𝐵))
13 oelim2 7675 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴𝑜 𝐵) = 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦))
141, 13sylan 488 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴𝑜 𝐵) = 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦))
1514eleq2d 2687 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴𝑜 𝐵) ↔ 𝑥 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦)))
16 eliun 4524 . . . . 5 (𝑥 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦) ↔ ∃𝑦 ∈ (𝐵 ∖ 1𝑜)𝑥 ∈ (𝐴𝑜 𝑦))
17 eldifi 3732 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ 1𝑜) → 𝑦𝐵)
187adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝐴 ∈ On)
198adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝐵 ∈ On)
20 simprl 794 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝑦𝐵)
21 onelon 5748 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦𝐵) → 𝑦 ∈ On)
2219, 20, 21syl2anc 693 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝑦 ∈ On)
23 oecl 7617 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
2418, 22, 23syl2anc 693 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → (𝐴𝑜 𝑦) ∈ On)
25 eloni 5733 . . . . . . . . . . 11 ((𝐴𝑜 𝑦) ∈ On → Ord (𝐴𝑜 𝑦))
2624, 25syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → Ord (𝐴𝑜 𝑦))
27 simprr 796 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝑥 ∈ (𝐴𝑜 𝑦))
28 ordsucss 7018 . . . . . . . . . 10 (Ord (𝐴𝑜 𝑦) → (𝑥 ∈ (𝐴𝑜 𝑦) → suc 𝑥 ⊆ (𝐴𝑜 𝑦)))
2926, 27, 28sylc 65 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → suc 𝑥 ⊆ (𝐴𝑜 𝑦))
30 simpll 790 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝐴 ∈ (On ∖ 2𝑜))
31 oeordi 7667 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑦𝐵 → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵)))
3219, 30, 31syl2anc 693 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → (𝑦𝐵 → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵)))
3320, 32mpd 15 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵))
34 onelon 5748 . . . . . . . . . . . 12 (((𝐴𝑜 𝑦) ∈ On ∧ 𝑥 ∈ (𝐴𝑜 𝑦)) → 𝑥 ∈ On)
3524, 27, 34syl2anc 693 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝑥 ∈ On)
36 suceloni 7013 . . . . . . . . . . 11 (𝑥 ∈ On → suc 𝑥 ∈ On)
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → suc 𝑥 ∈ On)
384adantr 481 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → (𝐴𝑜 𝐵) ∈ On)
39 ontr2 5772 . . . . . . . . . 10 ((suc 𝑥 ∈ On ∧ (𝐴𝑜 𝐵) ∈ On) → ((suc 𝑥 ⊆ (𝐴𝑜 𝑦) ∧ (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵)) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4037, 38, 39syl2anc 693 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → ((suc 𝑥 ⊆ (𝐴𝑜 𝑦) ∧ (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵)) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4129, 33, 40mp2and 715 . . . . . . . 8 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → suc 𝑥 ∈ (𝐴𝑜 𝐵))
4241expr 643 . . . . . . 7 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴𝑜 𝑦) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4317, 42sylan2 491 . . . . . 6 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ (𝐵 ∖ 1𝑜)) → (𝑥 ∈ (𝐴𝑜 𝑦) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4443rexlimdva 3031 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (∃𝑦 ∈ (𝐵 ∖ 1𝑜)𝑥 ∈ (𝐴𝑜 𝑦) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4516, 44syl5bi 232 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4615, 45sylbid 230 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴𝑜 𝐵) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4746ralrimiv 2965 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∀𝑥 ∈ (𝐴𝑜 𝐵)suc 𝑥 ∈ (𝐴𝑜 𝐵))
48 dflim4 7048 . 2 (Lim (𝐴𝑜 𝐵) ↔ (Ord (𝐴𝑜 𝐵) ∧ ∅ ∈ (𝐴𝑜 𝐵) ∧ ∀𝑥 ∈ (𝐴𝑜 𝐵)suc 𝑥 ∈ (𝐴𝑜 𝐵)))
496, 12, 47, 48syl3anbrc 1246 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cdif 3571  wss 3574  c0 3915   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650  1𝑜c1o 7553  2𝑜c2o 7554  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oaabs2  7725  omabs  7727
  Copyright terms: Public domain W3C validator