| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 3732 |
. . . 4
⊢ (𝐴 ∈ (On ∖
2𝑜) → 𝐴 ∈ On) |
| 2 | | limelon 5788 |
. . . 4
⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) |
| 3 | | oecl 7617 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜
𝐵) ∈
On) |
| 4 | 1, 2, 3 | syl2an 494 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ↑𝑜 𝐵) ∈ On) |
| 5 | | eloni 5733 |
. . 3
⊢ ((𝐴 ↑𝑜
𝐵) ∈ On → Ord
(𝐴
↑𝑜 𝐵)) |
| 6 | 4, 5 | syl 17 |
. 2
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → Ord (𝐴 ↑𝑜 𝐵)) |
| 7 | 1 | adantr 481 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → 𝐴 ∈ On) |
| 8 | 2 | adantl 482 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → 𝐵 ∈ On) |
| 9 | | dif20el 7585 |
. . . 4
⊢ (𝐴 ∈ (On ∖
2𝑜) → ∅ ∈ 𝐴) |
| 10 | 9 | adantr 481 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → ∅ ∈ 𝐴) |
| 11 | | oen0 7666 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → ∅ ∈
(𝐴
↑𝑜 𝐵)) |
| 12 | 7, 8, 10, 11 | syl21anc 1325 |
. 2
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → ∅ ∈ (𝐴 ↑𝑜 𝐵)) |
| 13 | | oelim2 7675 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ↑𝑜 𝐵) = ∪ 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴 ↑𝑜
𝑦)) |
| 14 | 1, 13 | sylan 488 |
. . . . 5
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ↑𝑜 𝐵) = ∪ 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴 ↑𝑜
𝑦)) |
| 15 | 14 | eleq2d 2687 |
. . . 4
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴 ↑𝑜 𝐵) ↔ 𝑥 ∈ ∪
𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴 ↑𝑜
𝑦))) |
| 16 | | eliun 4524 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴 ↑𝑜
𝑦) ↔ ∃𝑦 ∈ (𝐵 ∖ 1𝑜)𝑥 ∈ (𝐴 ↑𝑜 𝑦)) |
| 17 | | eldifi 3732 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ 1𝑜) → 𝑦 ∈ 𝐵) |
| 18 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → 𝐴 ∈ On) |
| 19 | 8 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → 𝐵 ∈ On) |
| 20 | | simprl 794 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → 𝑦 ∈ 𝐵) |
| 21 | | onelon 5748 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ On) |
| 22 | 19, 20, 21 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → 𝑦 ∈ On) |
| 23 | | oecl 7617 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜
𝑦) ∈
On) |
| 24 | 18, 22, 23 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → (𝐴 ↑𝑜 𝑦) ∈ On) |
| 25 | | eloni 5733 |
. . . . . . . . . . 11
⊢ ((𝐴 ↑𝑜
𝑦) ∈ On → Ord
(𝐴
↑𝑜 𝑦)) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → Ord (𝐴 ↑𝑜
𝑦)) |
| 27 | | simprr 796 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → 𝑥 ∈ (𝐴 ↑𝑜 𝑦)) |
| 28 | | ordsucss 7018 |
. . . . . . . . . 10
⊢ (Ord
(𝐴
↑𝑜 𝑦) → (𝑥 ∈ (𝐴 ↑𝑜 𝑦) → suc 𝑥 ⊆ (𝐴 ↑𝑜 𝑦))) |
| 29 | 26, 27, 28 | sylc 65 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → suc 𝑥 ⊆ (𝐴 ↑𝑜 𝑦)) |
| 30 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → 𝐴 ∈ (On ∖
2𝑜)) |
| 31 | | oeordi 7667 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ (On ∖
2𝑜)) → (𝑦 ∈ 𝐵 → (𝐴 ↑𝑜 𝑦) ∈ (𝐴 ↑𝑜 𝐵))) |
| 32 | 19, 30, 31 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → (𝑦 ∈ 𝐵 → (𝐴 ↑𝑜 𝑦) ∈ (𝐴 ↑𝑜 𝐵))) |
| 33 | 20, 32 | mpd 15 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → (𝐴 ↑𝑜 𝑦) ∈ (𝐴 ↑𝑜 𝐵)) |
| 34 | | onelon 5748 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↑𝑜
𝑦) ∈ On ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦)) → 𝑥 ∈ On) |
| 35 | 24, 27, 34 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → 𝑥 ∈ On) |
| 36 | | suceloni 7013 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → suc 𝑥 ∈ On) |
| 38 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → (𝐴 ↑𝑜 𝐵) ∈ On) |
| 39 | | ontr2 5772 |
. . . . . . . . . 10
⊢ ((suc
𝑥 ∈ On ∧ (𝐴 ↑𝑜
𝐵) ∈ On) → ((suc
𝑥 ⊆ (𝐴 ↑𝑜
𝑦) ∧ (𝐴 ↑𝑜 𝑦) ∈ (𝐴 ↑𝑜 𝐵)) → suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵))) |
| 40 | 37, 38, 39 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → ((suc 𝑥 ⊆ (𝐴 ↑𝑜 𝑦) ∧ (𝐴 ↑𝑜 𝑦) ∈ (𝐴 ↑𝑜 𝐵)) → suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵))) |
| 41 | 29, 33, 40 | mp2and 715 |
. . . . . . . 8
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 ↑𝑜 𝑦))) → suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵)) |
| 42 | 41 | expr 643 |
. . . . . . 7
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ (𝐴 ↑𝑜 𝑦) → suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵))) |
| 43 | 17, 42 | sylan2 491 |
. . . . . 6
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ (𝐵 ∖ 1𝑜)) →
(𝑥 ∈ (𝐴 ↑𝑜
𝑦) → suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵))) |
| 44 | 43 | rexlimdva 3031 |
. . . . 5
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (∃𝑦 ∈ (𝐵 ∖ 1𝑜)𝑥 ∈ (𝐴 ↑𝑜 𝑦) → suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵))) |
| 45 | 16, 44 | syl5bi 232 |
. . . 4
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ ∪
𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴 ↑𝑜
𝑦) → suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵))) |
| 46 | 15, 45 | sylbid 230 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴 ↑𝑜 𝐵) → suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵))) |
| 47 | 46 | ralrimiv 2965 |
. 2
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → ∀𝑥 ∈ (𝐴 ↑𝑜 𝐵)suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵)) |
| 48 | | dflim4 7048 |
. 2
⊢ (Lim
(𝐴
↑𝑜 𝐵) ↔ (Ord (𝐴 ↑𝑜 𝐵) ∧ ∅ ∈ (𝐴 ↑𝑜
𝐵) ∧ ∀𝑥 ∈ (𝐴 ↑𝑜 𝐵)suc 𝑥 ∈ (𝐴 ↑𝑜 𝐵))) |
| 49 | 6, 12, 47, 48 | syl3anbrc 1246 |
1
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → Lim (𝐴 ↑𝑜 𝐵)) |