| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oelimcl | Structured version Visualization version Unicode version | ||
| Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.) |
| Ref | Expression |
|---|---|
| oelimcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3732 |
. . . 4
| |
| 2 | limelon 5788 |
. . . 4
| |
| 3 | oecl 7617 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2an 494 |
. . 3
|
| 5 | eloni 5733 |
. . 3
| |
| 6 | 4, 5 | syl 17 |
. 2
|
| 7 | 1 | adantr 481 |
. . 3
|
| 8 | 2 | adantl 482 |
. . 3
|
| 9 | dif20el 7585 |
. . . 4
| |
| 10 | 9 | adantr 481 |
. . 3
|
| 11 | oen0 7666 |
. . 3
| |
| 12 | 7, 8, 10, 11 | syl21anc 1325 |
. 2
|
| 13 | oelim2 7675 |
. . . . . 6
| |
| 14 | 1, 13 | sylan 488 |
. . . . 5
|
| 15 | 14 | eleq2d 2687 |
. . . 4
|
| 16 | eliun 4524 |
. . . . 5
| |
| 17 | eldifi 3732 |
. . . . . . 7
| |
| 18 | 7 | adantr 481 |
. . . . . . . . . . . 12
|
| 19 | 8 | adantr 481 |
. . . . . . . . . . . . 13
|
| 20 | simprl 794 |
. . . . . . . . . . . . 13
| |
| 21 | onelon 5748 |
. . . . . . . . . . . . 13
| |
| 22 | 19, 20, 21 | syl2anc 693 |
. . . . . . . . . . . 12
|
| 23 | oecl 7617 |
. . . . . . . . . . . 12
| |
| 24 | 18, 22, 23 | syl2anc 693 |
. . . . . . . . . . 11
|
| 25 | eloni 5733 |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . 10
|
| 27 | simprr 796 |
. . . . . . . . . 10
| |
| 28 | ordsucss 7018 |
. . . . . . . . . 10
| |
| 29 | 26, 27, 28 | sylc 65 |
. . . . . . . . 9
|
| 30 | simpll 790 |
. . . . . . . . . . 11
| |
| 31 | oeordi 7667 |
. . . . . . . . . . 11
| |
| 32 | 19, 30, 31 | syl2anc 693 |
. . . . . . . . . 10
|
| 33 | 20, 32 | mpd 15 |
. . . . . . . . 9
|
| 34 | onelon 5748 |
. . . . . . . . . . . 12
| |
| 35 | 24, 27, 34 | syl2anc 693 |
. . . . . . . . . . 11
|
| 36 | suceloni 7013 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . 10
|
| 38 | 4 | adantr 481 |
. . . . . . . . . 10
|
| 39 | ontr2 5772 |
. . . . . . . . . 10
| |
| 40 | 37, 38, 39 | syl2anc 693 |
. . . . . . . . 9
|
| 41 | 29, 33, 40 | mp2and 715 |
. . . . . . . 8
|
| 42 | 41 | expr 643 |
. . . . . . 7
|
| 43 | 17, 42 | sylan2 491 |
. . . . . 6
|
| 44 | 43 | rexlimdva 3031 |
. . . . 5
|
| 45 | 16, 44 | syl5bi 232 |
. . . 4
|
| 46 | 15, 45 | sylbid 230 |
. . 3
|
| 47 | 46 | ralrimiv 2965 |
. 2
|
| 48 | dflim4 7048 |
. 2
| |
| 49 | 6, 12, 47, 48 | syl3anbrc 1246 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-oexp 7566 |
| This theorem is referenced by: oaabs2 7725 omabs 7727 |
| Copyright terms: Public domain | W3C validator |