Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndadd2rd Structured version   Visualization version   GIF version

Theorem omndadd2rd 29709
Description: In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
omndadd.0 𝐵 = (Base‘𝑀)
omndadd.1 = (le‘𝑀)
omndadd.2 + = (+g𝑀)
omndadd2d.m (𝜑𝑀 ∈ oMnd)
omndadd2d.w (𝜑𝑊𝐵)
omndadd2d.x (𝜑𝑋𝐵)
omndadd2d.y (𝜑𝑌𝐵)
omndadd2d.z (𝜑𝑍𝐵)
omndadd2d.1 (𝜑𝑋 𝑍)
omndadd2d.2 (𝜑𝑌 𝑊)
omndadd2rd.c (𝜑 → (oppg𝑀) ∈ oMnd)
Assertion
Ref Expression
omndadd2rd (𝜑 → (𝑋 + 𝑌) (𝑍 + 𝑊))

Proof of Theorem omndadd2rd
StepHypRef Expression
1 omndadd2d.m . . 3 (𝜑𝑀 ∈ oMnd)
2 omndtos 29705 . . 3 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
3 tospos 29658 . . 3 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
41, 2, 33syl 18 . 2 (𝜑𝑀 ∈ Poset)
5 omndmnd 29704 . . . . 5 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
61, 5syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
7 omndadd2d.x . . . 4 (𝜑𝑋𝐵)
8 omndadd2d.y . . . 4 (𝜑𝑌𝐵)
9 omndadd.0 . . . . 5 𝐵 = (Base‘𝑀)
10 omndadd.2 . . . . 5 + = (+g𝑀)
119, 10mndcl 17301 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
126, 7, 8, 11syl3anc 1326 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
13 omndadd2d.w . . . 4 (𝜑𝑊𝐵)
149, 10mndcl 17301 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑋𝐵𝑊𝐵) → (𝑋 + 𝑊) ∈ 𝐵)
156, 7, 13, 14syl3anc 1326 . . 3 (𝜑 → (𝑋 + 𝑊) ∈ 𝐵)
16 omndadd2d.z . . . 4 (𝜑𝑍𝐵)
179, 10mndcl 17301 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
186, 16, 13, 17syl3anc 1326 . . 3 (𝜑 → (𝑍 + 𝑊) ∈ 𝐵)
1912, 15, 183jca 1242 . 2 (𝜑 → ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵))
20 omndadd2rd.c . . 3 (𝜑 → (oppg𝑀) ∈ oMnd)
21 omndadd2d.2 . . 3 (𝜑𝑌 𝑊)
22 omndadd.1 . . . 4 = (le‘𝑀)
239, 22, 10omndaddr 29707 . . 3 (((oppg𝑀) ∈ oMnd ∧ (𝑌𝐵𝑊𝐵𝑋𝐵) ∧ 𝑌 𝑊) → (𝑋 + 𝑌) (𝑋 + 𝑊))
2420, 8, 13, 7, 21, 23syl131anc 1339 . 2 (𝜑 → (𝑋 + 𝑌) (𝑋 + 𝑊))
25 omndadd2d.1 . . 3 (𝜑𝑋 𝑍)
269, 22, 10omndadd 29706 . . 3 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑍𝐵𝑊𝐵) ∧ 𝑋 𝑍) → (𝑋 + 𝑊) (𝑍 + 𝑊))
271, 7, 16, 13, 25, 26syl131anc 1339 . 2 (𝜑 → (𝑋 + 𝑊) (𝑍 + 𝑊))
289, 22postr 16953 . . 3 ((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → (((𝑋 + 𝑌) (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) (𝑍 + 𝑊)) → (𝑋 + 𝑌) (𝑍 + 𝑊)))
2928imp 445 . 2 (((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) ∧ ((𝑋 + 𝑌) (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) (𝑍 + 𝑊))) → (𝑋 + 𝑌) (𝑍 + 𝑊))
304, 19, 24, 27, 29syl22anc 1327 1 (𝜑 → (𝑋 + 𝑌) (𝑍 + 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  lecple 15948  Posetcpo 16940  Tosetctos 17033  Mndcmnd 17294  oppgcoppg 17775  oMndcomnd 29697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-ple 15961  df-poset 16946  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-oppg 17776  df-omnd 29699
This theorem is referenced by:  archiabllem2c  29749
  Copyright terms: Public domain W3C validator