MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas2 Structured version   Visualization version   GIF version

Theorem ordtbas2 20995
Description: Lemma for ordtbas 20996. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
ordtval.4 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
Assertion
Ref Expression
ordtbas2 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑥,𝑎,𝑦,𝑅,𝑏   𝑋,𝑎,𝑏,𝑥,𝑦   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem ordtbas2
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 3776 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
2 ssun2 3777 . . . . . . 7 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3 ordtval.1 . . . . . . . . . 10 𝑋 = dom 𝑅
4 ordtval.2 . . . . . . . . . 10 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
5 ordtval.3 . . . . . . . . . 10 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
63, 4, 5ordtuni 20994 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (𝐴𝐵)))
7 dmexg 7097 . . . . . . . . . 10 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
83, 7syl5eqel 2705 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 ∈ V)
96, 8eqeltrrd 2702 . . . . . . . 8 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
10 uniexb 6973 . . . . . . . 8 (({𝑋} ∪ (𝐴𝐵)) ∈ V ↔ ({𝑋} ∪ (𝐴𝐵)) ∈ V)
119, 10sylibr 224 . . . . . . 7 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
12 ssexg 4804 . . . . . . 7 (((𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵)) ∧ ({𝑋} ∪ (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
132, 11, 12sylancr 695 . . . . . 6 (𝑅 ∈ TosetRel → (𝐴𝐵) ∈ V)
14 ssexg 4804 . . . . . 6 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
151, 13, 14sylancr 695 . . . . 5 (𝑅 ∈ TosetRel → 𝐴 ∈ V)
16 ssun2 3777 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
17 ssexg 4804 . . . . . 6 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
1816, 13, 17sylancr 695 . . . . 5 (𝑅 ∈ TosetRel → 𝐵 ∈ V)
19 elfiun 8336 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧 ∈ (fi‘(𝐴𝐵)) ↔ (𝑧 ∈ (fi‘𝐴) ∨ 𝑧 ∈ (fi‘𝐵) ∨ ∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛))))
2015, 18, 19syl2anc 693 . . . 4 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) ↔ (𝑧 ∈ (fi‘𝐴) ∨ 𝑧 ∈ (fi‘𝐵) ∨ ∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛))))
213, 4ordtbaslem 20992 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴)
2221, 1syl6eqss 3655 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘𝐴) ⊆ (𝐴𝐵))
23 ssun1 3776 . . . . . . 7 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ 𝐶)
2422, 23syl6ss 3615 . . . . . 6 (𝑅 ∈ TosetRel → (fi‘𝐴) ⊆ ((𝐴𝐵) ∪ 𝐶))
2524sseld 3602 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘𝐴) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
26 cnvtsr 17222 . . . . . . . . . 10 (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )
27 df-rn 5125 . . . . . . . . . . 11 ran 𝑅 = dom 𝑅
28 eqid 2622 . . . . . . . . . . 11 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
2927, 28ordtbaslem 20992 . . . . . . . . . 10 (𝑅 ∈ TosetRel → (fi‘ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
3026, 29syl 17 . . . . . . . . 9 (𝑅 ∈ TosetRel → (fi‘ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
31 tsrps 17221 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
323psrn 17209 . . . . . . . . . . . . . 14 (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)
3331, 32syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → 𝑋 = ran 𝑅)
34 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
35 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
3634, 35brcnv 5305 . . . . . . . . . . . . . . . . 17 (𝑦𝑅𝑥𝑥𝑅𝑦)
3736bicomi 214 . . . . . . . . . . . . . . . 16 (𝑥𝑅𝑦𝑦𝑅𝑥)
3837notbii 310 . . . . . . . . . . . . . . 15 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)
3938a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
4033, 39rabeqbidv 3195 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
4133, 40mpteq12dv 4733 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
4241rneqd 5353 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
435, 42syl5eq 2668 . . . . . . . . . 10 (𝑅 ∈ TosetRel → 𝐵 = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
4443fveq2d 6195 . . . . . . . . 9 (𝑅 ∈ TosetRel → (fi‘𝐵) = (fi‘ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})))
4530, 44, 433eqtr4d 2666 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘𝐵) = 𝐵)
4645, 16syl6eqss 3655 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘𝐵) ⊆ (𝐴𝐵))
4746, 23syl6ss 3615 . . . . . 6 (𝑅 ∈ TosetRel → (fi‘𝐵) ⊆ ((𝐴𝐵) ∪ 𝐶))
4847sseld 3602 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘𝐵) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
49 ssun2 3777 . . . . . . . 8 𝐶 ⊆ ((𝐴𝐵) ∪ 𝐶)
5021, 4syl6eq 2672 . . . . . . . . . . . . . . 15 (𝑅 ∈ TosetRel → (fi‘𝐴) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
5150eleq2d 2687 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → (𝑚 ∈ (fi‘𝐴) ↔ 𝑚 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})))
52 vex 3203 . . . . . . . . . . . . . . 15 𝑚 ∈ V
53 breq2 4657 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑦𝑅𝑥𝑦𝑅𝑎))
5453notbid 308 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑎))
5554rabbidv 3189 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
5655cbvmptv 4750 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑎𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
5756elrnmpt 5372 . . . . . . . . . . . . . . 15 (𝑚 ∈ V → (𝑚 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}))
5852, 57ax-mp 5 . . . . . . . . . . . . . 14 (𝑚 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
5951, 58syl6bb 276 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝑚 ∈ (fi‘𝐴) ↔ ∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}))
6045, 5syl6eq 2672 . . . . . . . . . . . . . . 15 (𝑅 ∈ TosetRel → (fi‘𝐵) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
6160eleq2d 2687 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → (𝑛 ∈ (fi‘𝐵) ↔ 𝑛 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))
62 vex 3203 . . . . . . . . . . . . . . 15 𝑛 ∈ V
63 breq1 4656 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑏 → (𝑥𝑅𝑦𝑏𝑅𝑦))
6463notbid 308 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑏𝑅𝑦))
6564rabbidv 3189 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
6665cbvmptv 4750 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑏𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
6766elrnmpt 5372 . . . . . . . . . . . . . . 15 (𝑛 ∈ V → (𝑛 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
6862, 67ax-mp 5 . . . . . . . . . . . . . 14 (𝑛 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
6961, 68syl6bb 276 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝑛 ∈ (fi‘𝐵) ↔ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
7059, 69anbi12d 747 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → ((𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵)) ↔ (∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})))
71 reeanv 3107 . . . . . . . . . . . . 13 (∃𝑎𝑋𝑏𝑋 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) ↔ (∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
72 ineq12 3809 . . . . . . . . . . . . . . . 16 ((𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → (𝑚𝑛) = ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
73 inrab 3899 . . . . . . . . . . . . . . . 16 ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}
7472, 73syl6eq 2672 . . . . . . . . . . . . . . 15 ((𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7574reximi 3011 . . . . . . . . . . . . . 14 (∃𝑏𝑋 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7675reximi 3011 . . . . . . . . . . . . 13 (∃𝑎𝑋𝑏𝑋 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7771, 76sylbir 225 . . . . . . . . . . . 12 ((∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7870, 77syl6bi 243 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → ((𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵)) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}))
7978imp 445 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8052inex1 4799 . . . . . . . . . . 11 (𝑚𝑛) ∈ V
81 eqid 2622 . . . . . . . . . . . 12 (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) = (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8281elrnmpt2g 6772 . . . . . . . . . . 11 ((𝑚𝑛) ∈ V → ((𝑚𝑛) ∈ ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}))
8380, 82ax-mp 5 . . . . . . . . . 10 ((𝑚𝑛) ∈ ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8479, 83sylibr 224 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑚𝑛) ∈ ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}))
85 ordtval.4 . . . . . . . . 9 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8684, 85syl6eleqr 2712 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑚𝑛) ∈ 𝐶)
8749, 86sseldi 3601 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑚𝑛) ∈ ((𝐴𝐵) ∪ 𝐶))
88 eleq1 2689 . . . . . . 7 (𝑧 = (𝑚𝑛) → (𝑧 ∈ ((𝐴𝐵) ∪ 𝐶) ↔ (𝑚𝑛) ∈ ((𝐴𝐵) ∪ 𝐶)))
8987, 88syl5ibrcom 237 . . . . . 6 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑧 = (𝑚𝑛) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9089rexlimdvva 3038 . . . . 5 (𝑅 ∈ TosetRel → (∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9125, 48, 903jaod 1392 . . . 4 (𝑅 ∈ TosetRel → ((𝑧 ∈ (fi‘𝐴) ∨ 𝑧 ∈ (fi‘𝐵) ∨ ∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛)) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9220, 91sylbid 230 . . 3 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9392ssrdv 3609 . 2 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ 𝐶))
94 ssfii 8325 . . . 4 ((𝐴𝐵) ∈ V → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9513, 94syl 17 . . 3 (𝑅 ∈ TosetRel → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9695adantr 481 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
97 simprl 794 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑎𝑋)
98 eqidd 2623 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
9955eqeq2d 2632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ↔ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}))
10099rspcev 3309 . . . . . . . . . . . . . 14 ((𝑎𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
10197, 98, 100syl2anc 693 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
1028adantr 481 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑋 ∈ V)
103 rabexg 4812 . . . . . . . . . . . . . 14 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V)
104 eqid 2622 . . . . . . . . . . . . . . 15 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
105104elrnmpt 5372 . . . . . . . . . . . . . 14 ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
106102, 103, 1053syl 18 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
107101, 106mpbird 247 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
108107, 4syl6eleqr 2712 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ 𝐴)
1091, 108sseldi 3601 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ (𝐴𝐵))
11096, 109sseldd 3604 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ (fi‘(𝐴𝐵)))
111 simprr 796 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑏𝑋)
112 eqidd 2623 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
11365eqeq2d 2632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ↔ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
114113rspcev 3309 . . . . . . . . . . . . . 14 ((𝑏𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
115111, 112, 114syl2anc 693 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
116 rabexg 4812 . . . . . . . . . . . . . 14 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ V)
117 eqid 2622 . . . . . . . . . . . . . . 15 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
118117elrnmpt 5372 . . . . . . . . . . . . . 14 ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ V → ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
119102, 116, 1183syl 18 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
120115, 119mpbird 247 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
121120, 5syl6eleqr 2712 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ 𝐵)
12216, 121sseldi 3601 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ (𝐴𝐵))
12396, 122sseldd 3604 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ (fi‘(𝐴𝐵)))
124 fiin 8328 . . . . . . . . 9 (({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ (fi‘(𝐴𝐵)) ∧ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ (fi‘(𝐴𝐵))) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) ∈ (fi‘(𝐴𝐵)))
125110, 123, 124syl2anc 693 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) ∈ (fi‘(𝐴𝐵)))
12673, 125syl5eqelr 2706 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)} ∈ (fi‘(𝐴𝐵)))
127126ralrimivva 2971 . . . . . 6 (𝑅 ∈ TosetRel → ∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)} ∈ (fi‘(𝐴𝐵)))
12881fmpt2 7237 . . . . . 6 (∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)} ∈ (fi‘(𝐴𝐵)) ↔ (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}):(𝑋 × 𝑋)⟶(fi‘(𝐴𝐵)))
129127, 128sylib 208 . . . . 5 (𝑅 ∈ TosetRel → (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}):(𝑋 × 𝑋)⟶(fi‘(𝐴𝐵)))
130 frn 6053 . . . . 5 ((𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}):(𝑋 × 𝑋)⟶(fi‘(𝐴𝐵)) → ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⊆ (fi‘(𝐴𝐵)))
131129, 130syl 17 . . . 4 (𝑅 ∈ TosetRel → ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⊆ (fi‘(𝐴𝐵)))
13285, 131syl5eqss 3649 . . 3 (𝑅 ∈ TosetRel → 𝐶 ⊆ (fi‘(𝐴𝐵)))
13395, 132unssd 3789 . 2 (𝑅 ∈ TosetRel → ((𝐴𝐵) ∪ 𝐶) ⊆ (fi‘(𝐴𝐵)))
13493, 133eqssd 3620 1 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cun 3572  cin 3573  wss 3574  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  cmpt2 6652  ficfi 8316  PosetRelcps 17198   TosetRel ctsr 17199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-ps 17200  df-tsr 17201
This theorem is referenced by:  ordtbas  20996  leordtval  21017
  Copyright terms: Public domain W3C validator