MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfinv Structured version   Visualization version   GIF version

Theorem pmtrfinv 17881
Description: A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfinv (𝐹𝑅 → (𝐹𝐹) = ( I ↾ 𝐷))

Proof of Theorem pmtrfinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . . 7 𝑅 = ran 𝑇
3 eqid 2622 . . . . . . 7 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 17878 . . . . . 6 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
54simpld 475 . . . . 5 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜))
61pmtrf 17875 . . . . 5 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
75, 6syl 17 . . . 4 (𝐹𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
84simprd 479 . . . . 5 (𝐹𝑅𝐹 = (𝑇‘dom (𝐹 ∖ I )))
98feq1d 6030 . . . 4 (𝐹𝑅 → (𝐹:𝐷𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷))
107, 9mpbird 247 . . 3 (𝐹𝑅𝐹:𝐷𝐷)
11 fco 6058 . . . 4 ((𝐹:𝐷𝐷𝐹:𝐷𝐷) → (𝐹𝐹):𝐷𝐷)
1211anidms 677 . . 3 (𝐹:𝐷𝐷 → (𝐹𝐹):𝐷𝐷)
13 ffn 6045 . . 3 ((𝐹𝐹):𝐷𝐷 → (𝐹𝐹) Fn 𝐷)
1410, 12, 133syl 18 . 2 (𝐹𝑅 → (𝐹𝐹) Fn 𝐷)
15 fnresi 6008 . . 3 ( I ↾ 𝐷) Fn 𝐷
1615a1i 11 . 2 (𝐹𝑅 → ( I ↾ 𝐷) Fn 𝐷)
171, 2, 3pmtrffv 17879 . . . . . . 7 ((𝐹𝑅𝑥𝐷) → (𝐹𝑥) = if(𝑥 ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ {𝑥}), 𝑥))
18 iftrue 4092 . . . . . . 7 (𝑥 ∈ dom (𝐹 ∖ I ) → if(𝑥 ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ {𝑥}), 𝑥) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
1917, 18sylan9eq 2676 . . . . . 6 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
2019fveq2d 6195 . . . . 5 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑥)) = (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})))
21 simpll 790 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → 𝐹𝑅)
225simp2d 1074 . . . . . . . . 9 (𝐹𝑅 → dom (𝐹 ∖ I ) ⊆ 𝐷)
2322ad2antrr 762 . . . . . . . 8 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → dom (𝐹 ∖ I ) ⊆ 𝐷)
24 1onn 7719 . . . . . . . . . . . 12 1𝑜 ∈ ω
2524a1i 11 . . . . . . . . . . 11 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → 1𝑜 ∈ ω)
265simp3d 1075 . . . . . . . . . . . . 13 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2𝑜)
27 df-2o 7561 . . . . . . . . . . . . 13 2𝑜 = suc 1𝑜
2826, 27syl6breq 4694 . . . . . . . . . . . 12 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ suc 1𝑜)
2928ad2antrr 762 . . . . . . . . . . 11 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc 1𝑜)
30 simpr 477 . . . . . . . . . . 11 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I ))
31 dif1en 8193 . . . . . . . . . . 11 ((1𝑜 ∈ ω ∧ dom (𝐹 ∖ I ) ≈ suc 1𝑜𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1𝑜)
3225, 29, 30, 31syl3anc 1326 . . . . . . . . . 10 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1𝑜)
33 en1uniel 8028 . . . . . . . . . 10 ((dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1𝑜 (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
3432, 33syl 17 . . . . . . . . 9 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
3534eldifad 3586 . . . . . . . 8 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ))
3623, 35sseldd 3604 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ 𝐷)
371, 2, 3pmtrffv 17879 . . . . . . 7 ((𝐹𝑅 (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ 𝐷) → (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})) = if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})))
3821, 36, 37syl2anc 693 . . . . . 6 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})) = if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})))
39 iftrue 4092 . . . . . . . 8 ( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ) → if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})) = (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}))
4035, 39syl 17 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})) = (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}))
4126adantr 481 . . . . . . . 8 ((𝐹𝑅𝑥𝐷) → dom (𝐹 ∖ I ) ≈ 2𝑜)
42 en2other2 8832 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹 ∖ I ) ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) → (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥)
4342ancoms 469 . . . . . . . 8 ((dom (𝐹 ∖ I ) ≈ 2𝑜𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥)
4441, 43sylan 488 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥)
4540, 44eqtrd 2656 . . . . . 6 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})) = 𝑥)
4638, 45eqtrd 2656 . . . . 5 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})) = 𝑥)
4720, 46eqtrd 2656 . . . 4 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑥)) = 𝑥)
48 ffn 6045 . . . . . . . . 9 (𝐹:𝐷𝐷𝐹 Fn 𝐷)
4910, 48syl 17 . . . . . . . 8 (𝐹𝑅𝐹 Fn 𝐷)
50 fnelnfp 6443 . . . . . . . 8 ((𝐹 Fn 𝐷𝑥𝐷) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
5149, 50sylan 488 . . . . . . 7 ((𝐹𝑅𝑥𝐷) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
5251necon2bbid 2837 . . . . . 6 ((𝐹𝑅𝑥𝐷) → ((𝐹𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐹 ∖ I )))
5352biimpar 502 . . . . 5 (((𝐹𝑅𝑥𝐷) ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) = 𝑥)
54 fveq2 6191 . . . . . 6 ((𝐹𝑥) = 𝑥 → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
55 id 22 . . . . . 6 ((𝐹𝑥) = 𝑥 → (𝐹𝑥) = 𝑥)
5654, 55eqtrd 2656 . . . . 5 ((𝐹𝑥) = 𝑥 → (𝐹‘(𝐹𝑥)) = 𝑥)
5753, 56syl 17 . . . 4 (((𝐹𝑅𝑥𝐷) ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑥)) = 𝑥)
5847, 57pm2.61dan 832 . . 3 ((𝐹𝑅𝑥𝐷) → (𝐹‘(𝐹𝑥)) = 𝑥)
59 fvco2 6273 . . . 4 ((𝐹 Fn 𝐷𝑥𝐷) → ((𝐹𝐹)‘𝑥) = (𝐹‘(𝐹𝑥)))
6049, 59sylan 488 . . 3 ((𝐹𝑅𝑥𝐷) → ((𝐹𝐹)‘𝑥) = (𝐹‘(𝐹𝑥)))
61 fvresi 6439 . . . 4 (𝑥𝐷 → (( I ↾ 𝐷)‘𝑥) = 𝑥)
6261adantl 482 . . 3 ((𝐹𝑅𝑥𝐷) → (( I ↾ 𝐷)‘𝑥) = 𝑥)
6358, 60, 623eqtr4d 2666 . 2 ((𝐹𝑅𝑥𝐷) → ((𝐹𝐹)‘𝑥) = (( I ↾ 𝐷)‘𝑥))
6414, 16, 63eqfnfvd 6314 1 (𝐹𝑅 → (𝐹𝐹) = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  wss 3574  ifcif 4086  {csn 4177   cuni 4436   class class class wbr 4653   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  suc csuc 5725   Fn wfn 5883  wf 5884  cfv 5888  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554  cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  pmtrff1o  17883  pmtrfcnv  17884  symggen  17890  psgnunilem1  17913
  Copyright terms: Public domain W3C validator