Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1ocnv Structured version   Visualization version   GIF version

Theorem pw2f1ocnv 37604
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 8067, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.)
Hypothesis
Ref Expression
pw2f1o2.f 𝐹 = (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜}))
Assertion
Ref Expression
pw2f1ocnv (𝐴𝑉 → (𝐹:(2𝑜𝑚 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑧)

Proof of Theorem pw2f1ocnv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o2.f . 2 𝐹 = (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜}))
2 vex 3203 . . . 4 𝑥 ∈ V
32cnvex 7113 . . 3 𝑥 ∈ V
4 imaexg 7103 . . 3 (𝑥 ∈ V → (𝑥 “ {1𝑜}) ∈ V)
53, 4mp1i 13 . 2 ((𝐴𝑉𝑥 ∈ (2𝑜𝑚 𝐴)) → (𝑥 “ {1𝑜}) ∈ V)
6 mptexg 6484 . . 3 (𝐴𝑉 → (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)) ∈ V)
76adantr 481 . 2 ((𝐴𝑉𝑦 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)) ∈ V)
8 2on 7568 . . . . . 6 2𝑜 ∈ On
9 elmapg 7870 . . . . . 6 ((2𝑜 ∈ On ∧ 𝐴𝑉) → (𝑥 ∈ (2𝑜𝑚 𝐴) ↔ 𝑥:𝐴⟶2𝑜))
108, 9mpan 706 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (2𝑜𝑚 𝐴) ↔ 𝑥:𝐴⟶2𝑜))
1110anbi1d 741 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2𝑜𝑚 𝐴) ∧ 𝑦 = (𝑥 “ {1𝑜})) ↔ (𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜}))))
12 1on 7567 . . . . . . . . . . . . 13 1𝑜 ∈ On
1312elexi 3213 . . . . . . . . . . . 12 1𝑜 ∈ V
1413sucid 5804 . . . . . . . . . . 11 1𝑜 ∈ suc 1𝑜
15 df-2o 7561 . . . . . . . . . . 11 2𝑜 = suc 1𝑜
1614, 15eleqtrri 2700 . . . . . . . . . 10 1𝑜 ∈ 2𝑜
17 0ex 4790 . . . . . . . . . . . 12 ∅ ∈ V
1817prid1 4297 . . . . . . . . . . 11 ∅ ∈ {∅, {∅}}
19 df2o2 7574 . . . . . . . . . . 11 2𝑜 = {∅, {∅}}
2018, 19eleqtrri 2700 . . . . . . . . . 10 ∅ ∈ 2𝑜
2116, 20keepel 4155 . . . . . . . . 9 if(𝑧𝑦, 1𝑜, ∅) ∈ 2𝑜
2221rgenw 2924 . . . . . . . 8 𝑧𝐴 if(𝑧𝑦, 1𝑜, ∅) ∈ 2𝑜
23 eqid 2622 . . . . . . . . 9 (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)) = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))
2423fmpt 6381 . . . . . . . 8 (∀𝑧𝐴 if(𝑧𝑦, 1𝑜, ∅) ∈ 2𝑜 ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)):𝐴⟶2𝑜)
2522, 24mpbi 220 . . . . . . 7 (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)):𝐴⟶2𝑜
26 simpr 477 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)))
2726feq1d 6030 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → (𝑥:𝐴⟶2𝑜 ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)):𝐴⟶2𝑜))
2825, 27mpbiri 248 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → 𝑥:𝐴⟶2𝑜)
2926fveq1d 6193 . . . . . . . . . . . . 13 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))‘𝑤))
30 elequ1 1997 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
3130ifbid 4108 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → if(𝑧𝑦, 1𝑜, ∅) = if(𝑤𝑦, 1𝑜, ∅))
3213, 17keepel 4155 . . . . . . . . . . . . . 14 if(𝑤𝑦, 1𝑜, ∅) ∈ V
3331, 23, 32fvmpt 6282 . . . . . . . . . . . . 13 (𝑤𝐴 → ((𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))‘𝑤) = if(𝑤𝑦, 1𝑜, ∅))
3429, 33sylan9eq 2676 . . . . . . . . . . . 12 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1𝑜, ∅))
3534eqeq1d 2624 . . . . . . . . . . 11 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1𝑜 ↔ if(𝑤𝑦, 1𝑜, ∅) = 1𝑜))
36 iftrue 4092 . . . . . . . . . . . 12 (𝑤𝑦 → if(𝑤𝑦, 1𝑜, ∅) = 1𝑜)
37 noel 3919 . . . . . . . . . . . . . 14 ¬ ∅ ∈ ∅
38 iffalse 4095 . . . . . . . . . . . . . . . 16 𝑤𝑦 → if(𝑤𝑦, 1𝑜, ∅) = ∅)
3938eqeq1d 2624 . . . . . . . . . . . . . . 15 𝑤𝑦 → (if(𝑤𝑦, 1𝑜, ∅) = 1𝑜 ↔ ∅ = 1𝑜))
40 0lt1o 7584 . . . . . . . . . . . . . . . 16 ∅ ∈ 1𝑜
41 eleq2 2690 . . . . . . . . . . . . . . . 16 (∅ = 1𝑜 → (∅ ∈ ∅ ↔ ∅ ∈ 1𝑜))
4240, 41mpbiri 248 . . . . . . . . . . . . . . 15 (∅ = 1𝑜 → ∅ ∈ ∅)
4339, 42syl6bi 243 . . . . . . . . . . . . . 14 𝑤𝑦 → (if(𝑤𝑦, 1𝑜, ∅) = 1𝑜 → ∅ ∈ ∅))
4437, 43mtoi 190 . . . . . . . . . . . . 13 𝑤𝑦 → ¬ if(𝑤𝑦, 1𝑜, ∅) = 1𝑜)
4544con4i 113 . . . . . . . . . . . 12 (if(𝑤𝑦, 1𝑜, ∅) = 1𝑜𝑤𝑦)
4636, 45impbii 199 . . . . . . . . . . 11 (𝑤𝑦 ↔ if(𝑤𝑦, 1𝑜, ∅) = 1𝑜)
4735, 46syl6rbbr 279 . . . . . . . . . 10 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1𝑜))
48 fvex 6201 . . . . . . . . . . 11 (𝑥𝑤) ∈ V
4948elsn 4192 . . . . . . . . . 10 ((𝑥𝑤) ∈ {1𝑜} ↔ (𝑥𝑤) = 1𝑜)
5047, 49syl6bbr 278 . . . . . . . . 9 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) ∈ {1𝑜}))
5150pm5.32da 673 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → ((𝑤𝐴𝑤𝑦) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1𝑜})))
52 ssel 3597 . . . . . . . . . 10 (𝑦𝐴 → (𝑤𝑦𝑤𝐴))
5352adantr 481 . . . . . . . . 9 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → (𝑤𝑦𝑤𝐴))
5453pm4.71rd 667 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → (𝑤𝑦 ↔ (𝑤𝐴𝑤𝑦)))
55 ffn 6045 . . . . . . . . 9 (𝑥:𝐴⟶2𝑜𝑥 Fn 𝐴)
56 elpreima 6337 . . . . . . . . 9 (𝑥 Fn 𝐴 → (𝑤 ∈ (𝑥 “ {1𝑜}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1𝑜})))
5728, 55, 563syl 18 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → (𝑤 ∈ (𝑥 “ {1𝑜}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1𝑜})))
5851, 54, 573bitr4d 300 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1𝑜})))
5958eqrdv 2620 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → 𝑦 = (𝑥 “ {1𝑜}))
6028, 59jca 554 . . . . 5 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) → (𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})))
61 simpr 477 . . . . . . 7 ((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) → 𝑦 = (𝑥 “ {1𝑜}))
62 cnvimass 5485 . . . . . . . 8 (𝑥 “ {1𝑜}) ⊆ dom 𝑥
63 fdm 6051 . . . . . . . . 9 (𝑥:𝐴⟶2𝑜 → dom 𝑥 = 𝐴)
6463adantr 481 . . . . . . . 8 ((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) → dom 𝑥 = 𝐴)
6562, 64syl5sseq 3653 . . . . . . 7 ((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) → (𝑥 “ {1𝑜}) ⊆ 𝐴)
6661, 65eqsstrd 3639 . . . . . 6 ((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) → 𝑦𝐴)
67 simplr 792 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → 𝑦 = (𝑥 “ {1𝑜}))
6867eleq2d 2687 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1𝑜})))
6955adantr 481 . . . . . . . . . . . . . . 15 ((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) → 𝑥 Fn 𝐴)
70 fnbrfvb 6236 . . . . . . . . . . . . . . 15 ((𝑥 Fn 𝐴𝑤𝐴) → ((𝑥𝑤) = 1𝑜𝑤𝑥1𝑜))
7169, 70sylan 488 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1𝑜𝑤𝑥1𝑜))
72 vex 3203 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
7372eliniseg 5494 . . . . . . . . . . . . . . 15 (1𝑜 ∈ On → (𝑤 ∈ (𝑥 “ {1𝑜}) ↔ 𝑤𝑥1𝑜))
7412, 73ax-mp 5 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑥 “ {1𝑜}) ↔ 𝑤𝑥1𝑜)
7571, 74syl6bbr 278 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1𝑜𝑤 ∈ (𝑥 “ {1𝑜})))
7668, 75bitr4d 271 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1𝑜))
7776biimpa 501 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = 1𝑜)
7836adantl 482 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → if(𝑤𝑦, 1𝑜, ∅) = 1𝑜)
7977, 78eqtr4d 2659 . . . . . . . . . 10 ((((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1𝑜, ∅))
80 ffvelrn 6357 . . . . . . . . . . . . . . . . . 18 ((𝑥:𝐴⟶2𝑜𝑤𝐴) → (𝑥𝑤) ∈ 2𝑜)
8180adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ 2𝑜)
82 df2o3 7573 . . . . . . . . . . . . . . . . 17 2𝑜 = {∅, 1𝑜}
8381, 82syl6eleq 2711 . . . . . . . . . . . . . . . 16 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ {∅, 1𝑜})
8448elpr 4198 . . . . . . . . . . . . . . . 16 ((𝑥𝑤) ∈ {∅, 1𝑜} ↔ ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1𝑜))
8583, 84sylib 208 . . . . . . . . . . . . . . 15 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1𝑜))
8685ord 392 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → (𝑥𝑤) = 1𝑜))
8786, 76sylibrd 249 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → 𝑤𝑦))
8887con1d 139 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → (¬ 𝑤𝑦 → (𝑥𝑤) = ∅))
8988imp 445 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = ∅)
9038adantl 482 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → if(𝑤𝑦, 1𝑜, ∅) = ∅)
9189, 90eqtr4d 2659 . . . . . . . . . 10 ((((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1𝑜, ∅))
9279, 91pm2.61dan 832 . . . . . . . . 9 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1𝑜, ∅))
9333adantl 482 . . . . . . . . 9 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))‘𝑤) = if(𝑤𝑦, 1𝑜, ∅))
9492, 93eqtr4d 2659 . . . . . . . 8 (((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) ∧ 𝑤𝐴) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))‘𝑤))
9594ralrimiva 2966 . . . . . . 7 ((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) → ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))‘𝑤))
96 ffn 6045 . . . . . . . . 9 ((𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)):𝐴⟶2𝑜 → (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)) Fn 𝐴)
9725, 96ax-mp 5 . . . . . . . 8 (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)) Fn 𝐴
98 eqfnfv 6311 . . . . . . . 8 ((𝑥 Fn 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)) Fn 𝐴) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))‘𝑤)))
9969, 97, 98sylancl 694 . . . . . . 7 ((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))‘𝑤)))
10095, 99mpbird 247 . . . . . 6 ((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)))
10166, 100jca 554 . . . . 5 ((𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})) → (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))))
10260, 101impbii 199 . . . 4 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) ↔ (𝑥:𝐴⟶2𝑜𝑦 = (𝑥 “ {1𝑜})))
10311, 102syl6bbr 278 . . 3 (𝐴𝑉 → ((𝑥 ∈ (2𝑜𝑚 𝐴) ∧ 𝑦 = (𝑥 “ {1𝑜})) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)))))
104 selpw 4165 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
105104anbi1i 731 . . 3 ((𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅))))
106103, 105syl6bbr 278 . 2 (𝐴𝑉 → ((𝑥 ∈ (2𝑜𝑚 𝐴) ∧ 𝑦 = (𝑥 “ {1𝑜})) ↔ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)))))
1071, 5, 7, 106f1ocnvd 6884 1 (𝐴𝑉 → (𝐹:(2𝑜𝑚 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1𝑜, ∅)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  {cpr 4179   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  cima 5117  Oncon0 5723  suc csuc 5725   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  2𝑜c2o 7554  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-map 7859
This theorem is referenced by:  pw2f1o2  37605
  Copyright terms: Public domain W3C validator