Proof of Theorem relexpfld
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 473 |
. . . . . . . 8
⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉)) → 𝑁 = 1) |
| 2 | 1 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉)) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟1)) |
| 3 | | relexp1g 13766 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
| 4 | 3 | ad2antll 765 |
. . . . . . 7
⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉)) → (𝑅↑𝑟1) = 𝑅) |
| 5 | 2, 4 | eqtrd 2656 |
. . . . . 6
⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉)) → (𝑅↑𝑟𝑁) = 𝑅) |
| 6 | 5 | unieqd 4446 |
. . . . 5
⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉)) → ∪
(𝑅↑𝑟𝑁) = ∪ 𝑅) |
| 7 | 6 | unieqd 4446 |
. . . 4
⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉)) → ∪ ∪ (𝑅↑𝑟𝑁) = ∪ ∪ 𝑅) |
| 8 | | eqimss 3657 |
. . . 4
⊢ (∪ ∪ (𝑅↑𝑟𝑁) = ∪ ∪ 𝑅
→ ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) |
| 9 | 7, 8 | syl 17 |
. . 3
⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉)) → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) |
| 10 | 9 | ex 450 |
. 2
⊢ (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅)) |
| 11 | | simp2 1062 |
. . . . . . 7
⊢ ((¬
𝑁 = 1 ∧ 𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → 𝑁 ∈
ℕ0) |
| 12 | | simp3 1063 |
. . . . . . 7
⊢ ((¬
𝑁 = 1 ∧ 𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) |
| 13 | | simp1 1061 |
. . . . . . . 8
⊢ ((¬
𝑁 = 1 ∧ 𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ¬ 𝑁 = 1) |
| 14 | 13 | pm2.21d 118 |
. . . . . . 7
⊢ ((¬
𝑁 = 1 ∧ 𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → (𝑁 = 1 → Rel 𝑅)) |
| 15 | 11, 12, 14 | 3jca 1242 |
. . . . . 6
⊢ ((¬
𝑁 = 1 ∧ 𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → (𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅))) |
| 16 | | relexprelg 13778 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁)) |
| 17 | | relfld 5661 |
. . . . . 6
⊢ (Rel
(𝑅↑𝑟𝑁) → ∪ ∪ (𝑅↑𝑟𝑁) = (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁))) |
| 18 | 15, 16, 17 | 3syl 18 |
. . . . 5
⊢ ((¬
𝑁 = 1 ∧ 𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ∪ ∪ (𝑅↑𝑟𝑁) = (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁))) |
| 19 | | elnn0 11294 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
| 20 | | relexpnndm 13781 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
| 21 | | relexpnnrn 13785 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ ran 𝑅) |
| 22 | | unss12 3785 |
. . . . . . . . . 10
⊢ ((dom
(𝑅↑𝑟𝑁) ⊆ dom 𝑅 ∧ ran (𝑅↑𝑟𝑁) ⊆ ran 𝑅) → (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 23 | 20, 21, 22 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 24 | 23 | ex 450 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
| 25 | | simpl 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) |
| 26 | 25 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
| 27 | | relexp0g 13762 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
| 28 | 27 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
| 29 | 26, 28 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
| 30 | 29 | dmeqd 5326 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
| 31 | | dmresi 5457 |
. . . . . . . . . . . 12
⊢ dom ( I
↾ (dom 𝑅 ∪ ran
𝑅)) = (dom 𝑅 ∪ ran 𝑅) |
| 32 | 30, 31 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅)) |
| 33 | | eqimss 3657 |
. . . . . . . . . . 11
⊢ (dom
(𝑅↑𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 35 | 29 | rneqd 5353 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
| 36 | | rnresi 5479 |
. . . . . . . . . . . 12
⊢ ran ( I
↾ (dom 𝑅 ∪ ran
𝑅)) = (dom 𝑅 ∪ ran 𝑅) |
| 37 | 35, 36 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅)) |
| 38 | | eqimss 3657 |
. . . . . . . . . . 11
⊢ (ran
(𝑅↑𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 40 | 34, 39 | unssd 3789 |
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 41 | 40 | ex 450 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑅 ∈ 𝑉 → (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
| 42 | 24, 41 | jaoi 394 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅 ∈ 𝑉 → (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
| 43 | 19, 42 | sylbi 207 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑅 ∈ 𝑉 → (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
| 44 | 11, 12, 43 | sylc 65 |
. . . . 5
⊢ ((¬
𝑁 = 1 ∧ 𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → (dom (𝑅↑𝑟𝑁) ∪ ran (𝑅↑𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 45 | 18, 44 | eqsstrd 3639 |
. . . 4
⊢ ((¬
𝑁 = 1 ∧ 𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 46 | | dmrnssfld 5384 |
. . . 4
⊢ (dom
𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 |
| 47 | 45, 46 | syl6ss 3615 |
. . 3
⊢ ((¬
𝑁 = 1 ∧ 𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) |
| 48 | 47 | 3expib 1268 |
. 2
⊢ (¬
𝑁 = 1 → ((𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅)) |
| 49 | 10, 48 | pm2.61i 176 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) |