MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem1 Structured version   Visualization version   GIF version

Theorem rpnnen2lem1 14943
Description: Lemma for rpnnen2 14955. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝑁(𝑥)

Proof of Theorem rpnnen2lem1
StepHypRef Expression
1 nnex 11026 . . . . 5 ℕ ∈ V
21elpw2 4828 . . . 4 (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ)
3 eleq2 2690 . . . . . . 7 (𝑥 = 𝐴 → (𝑛𝑥𝑛𝐴))
43ifbid 4108 . . . . . 6 (𝑥 = 𝐴 → if(𝑛𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
54mpteq2dv 4745 . . . . 5 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
6 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
71mptex 6486 . . . . 5 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) ∈ V
85, 6, 7fvmpt 6282 . . . 4 (𝐴 ∈ 𝒫 ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
92, 8sylbir 225 . . 3 (𝐴 ⊆ ℕ → (𝐹𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)))
109fveq1d 6193 . 2 (𝐴 ⊆ ℕ → ((𝐹𝐴)‘𝑁) = ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁))
11 eleq1 2689 . . . 4 (𝑛 = 𝑁 → (𝑛𝐴𝑁𝐴))
12 oveq2 6658 . . . 4 (𝑛 = 𝑁 → ((1 / 3)↑𝑛) = ((1 / 3)↑𝑁))
1311, 12ifbieq1d 4109 . . 3 (𝑛 = 𝑁 → if(𝑛𝐴, ((1 / 3)↑𝑛), 0) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
14 eqid 2622 . . 3 (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))
15 ovex 6678 . . . 4 ((1 / 3)↑𝑁) ∈ V
16 c0ex 10034 . . . 4 0 ∈ V
1715, 16ifex 4156 . . 3 if(𝑁𝐴, ((1 / 3)↑𝑁), 0) ∈ V
1813, 14, 17fvmpt 6282 . 2 (𝑁 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛𝐴, ((1 / 3)↑𝑛), 0))‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
1910, 18sylan9eq 2676 1 ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹𝐴)‘𝑁) = if(𝑁𝐴, ((1 / 3)↑𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wss 3574  ifcif 4086  𝒫 cpw 4158  cmpt 4729  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   / cdiv 10684  cn 11020  3c3 11071  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021
This theorem is referenced by:  rpnnen2lem3  14945  rpnnen2lem4  14946  rpnnen2lem9  14951  rpnnen2lem10  14952  rpnnen2lem11  14953
  Copyright terms: Public domain W3C validator