![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem3 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 14955. (Contributed by Mario Carneiro, 13-May-2013.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem3 | ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10039 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
2 | 3nn 11186 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
3 | nndivre 11056 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 708 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
5 | 4 | recni 10052 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
7 | 0re 10040 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
8 | 3re 11094 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
9 | 3pos 11114 | . . . . . . . . 9 ⊢ 0 < 3 | |
10 | 8, 9 | recgt0ii 10929 | . . . . . . . 8 ⊢ 0 < (1 / 3) |
11 | 7, 4, 10 | ltleii 10160 | . . . . . . 7 ⊢ 0 ≤ (1 / 3) |
12 | absid 14036 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3)) | |
13 | 4, 11, 12 | mp2an 708 | . . . . . 6 ⊢ (abs‘(1 / 3)) = (1 / 3) |
14 | 1lt3 11196 | . . . . . . 7 ⊢ 1 < 3 | |
15 | recgt1 10919 | . . . . . . . 8 ⊢ ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1)) | |
16 | 8, 9, 15 | mp2an 708 | . . . . . . 7 ⊢ (1 < 3 ↔ (1 / 3) < 1) |
17 | 14, 16 | mpbi 220 | . . . . . 6 ⊢ (1 / 3) < 1 |
18 | 13, 17 | eqbrtri 4674 | . . . . 5 ⊢ (abs‘(1 / 3)) < 1 |
19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → (abs‘(1 / 3)) < 1) |
20 | 1nn0 11308 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℕ0) |
22 | ssid 3624 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
23 | simpr 477 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
24 | nnuz 11723 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
25 | 23, 24 | syl6eleqr 2712 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ ℕ) |
26 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
27 | 26 | rpnnen2lem1 14943 | . . . . . 6 ⊢ ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
28 | 22, 25, 27 | sylancr 695 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
29 | 25 | iftrued 4094 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
30 | 28, 29 | eqtrd 2656 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘)) |
31 | 6, 19, 21, 30 | geolim2 14602 | . . 3 ⊢ (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))) |
32 | 31 | trud 1493 | . 2 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))) |
33 | exp1 12866 | . . . . 5 ⊢ ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3)) | |
34 | 5, 33 | ax-mp 5 | . . . 4 ⊢ ((1 / 3)↑1) = (1 / 3) |
35 | 3cn 11095 | . . . . . 6 ⊢ 3 ∈ ℂ | |
36 | ax-1cn 9994 | . . . . . 6 ⊢ 1 ∈ ℂ | |
37 | 3ne0 11115 | . . . . . . 7 ⊢ 3 ≠ 0 | |
38 | 35, 37 | pm3.2i 471 | . . . . . 6 ⊢ (3 ∈ ℂ ∧ 3 ≠ 0) |
39 | divsubdir 10721 | . . . . . 6 ⊢ ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3))) | |
40 | 35, 36, 38, 39 | mp3an 1424 | . . . . 5 ⊢ ((3 − 1) / 3) = ((3 / 3) − (1 / 3)) |
41 | 3m1e2 11137 | . . . . . 6 ⊢ (3 − 1) = 2 | |
42 | 41 | oveq1i 6660 | . . . . 5 ⊢ ((3 − 1) / 3) = (2 / 3) |
43 | 35, 37 | dividi 10758 | . . . . . 6 ⊢ (3 / 3) = 1 |
44 | 43 | oveq1i 6660 | . . . . 5 ⊢ ((3 / 3) − (1 / 3)) = (1 − (1 / 3)) |
45 | 40, 42, 44 | 3eqtr3ri 2653 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
46 | 34, 45 | oveq12i 6662 | . . 3 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3)) |
47 | 2cnne0 11242 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
48 | divcan7 10734 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2)) | |
49 | 36, 47, 38, 48 | mp3an 1424 | . . 3 ⊢ ((1 / 3) / (2 / 3)) = (1 / 2) |
50 | 46, 49 | eqtri 2644 | . 2 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2) |
51 | 32, 50 | breqtri 4678 | 1 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 ifcif 4086 𝒫 cpw 4158 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 < clt 10074 ≤ cle 10075 − cmin 10266 / cdiv 10684 ℕcn 11020 2c2 11070 3c3 11071 ℕ0cn0 11292 ℤ≥cuz 11687 seqcseq 12801 ↑cexp 12860 abscabs 13974 ⇝ cli 14215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 |
This theorem is referenced by: rpnnen2lem5 14947 rpnnen2lem12 14954 |
Copyright terms: Public domain | W3C validator |