MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem10 Structured version   Visualization version   GIF version

Theorem rpnnen2lem10 14952
Description: Lemma for rpnnen2 14955. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
rpnnen2.2 (𝜑𝐴 ⊆ ℕ)
rpnnen2.3 (𝜑𝐵 ⊆ ℕ)
rpnnen2.4 (𝜑𝑚 ∈ (𝐴𝐵))
rpnnen2.5 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
rpnnen2.6 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
Assertion
Ref Expression
rpnnen2lem10 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑘   𝐴,𝑘,𝑛,𝑥   𝐵,𝑘,𝑛,𝑥   𝑘,𝑚,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝜓(𝑥,𝑘,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑚)   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem10
StepHypRef Expression
1 simpr 477 . . . 4 ((𝜑𝜓) → 𝜓)
2 rpnnen2.6 . . . 4 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
31, 2sylib 208 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
4 rpnnen2.2 . . . . . 6 (𝜑𝐴 ⊆ ℕ)
5 rpnnen2.4 . . . . . . 7 (𝜑𝑚 ∈ (𝐴𝐵))
6 eldifi 3732 . . . . . . . 8 (𝑚 ∈ (𝐴𝐵) → 𝑚𝐴)
7 ssel2 3598 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝑚𝐴) → 𝑚 ∈ ℕ)
86, 7sylan2 491 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ (𝐴𝐵)) → 𝑚 ∈ ℕ)
94, 5, 8syl2anc 693 . . . . . 6 (𝜑𝑚 ∈ ℕ)
10 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
1110rpnnen2lem8 14950 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
124, 9, 11syl2anc 693 . . . . 5 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
13 1z 11407 . . . . . . . . . . . . . 14 1 ∈ ℤ
14 nnz 11399 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
15 elfzm11 12411 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1613, 14, 15sylancr 695 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1716biimpa 501 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
189, 17sylan 488 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
1918simp3d 1075 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → 𝑘 < 𝑚)
20 rpnnen2.5 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
21 elfznn 12370 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑚 − 1)) → 𝑘 ∈ ℕ)
22 breq1 4656 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 < 𝑚𝑘 < 𝑚))
23 eleq1 2689 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐴𝑘𝐴))
24 eleq1 2689 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐵𝑘𝐵))
2523, 24bibi12d 335 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛𝐴𝑛𝐵) ↔ (𝑘𝐴𝑘𝐵)))
2622, 25imbi12d 334 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ↔ (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵))))
2726rspccva 3308 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ∧ 𝑘 ∈ ℕ) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2820, 21, 27syl2an 494 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2919, 28mpd 15 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘𝐴𝑘𝐵))
3029ifbid 4108 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3110rpnnen2lem1 14943 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
324, 21, 31syl2an 494 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
33 rpnnen2.3 . . . . . . . . 9 (𝜑𝐵 ⊆ ℕ)
3410rpnnen2lem1 14943 . . . . . . . . 9 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3533, 21, 34syl2an 494 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3630, 32, 353eqtr4d 2666 . . . . . . 7 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐵)‘𝑘))
3736sumeq2dv 14433 . . . . . 6 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘))
3837oveq1d 6665 . . . . 5 (𝜑 → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
3912, 38eqtrd 2656 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4039adantr 481 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4110rpnnen2lem8 14950 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4233, 9, 41syl2anc 693 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4342adantr 481 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
443, 40, 433eqtr3d 2664 . 2 ((𝜑𝜓) → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4510rpnnen2lem6 14948 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
464, 9, 45syl2anc 693 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
4710rpnnen2lem6 14948 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
4833, 9, 47syl2anc 693 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
49 fzfid 12772 . . . . 5 (𝜑 → (1...(𝑚 − 1)) ∈ Fin)
5010rpnnen2lem2 14944 . . . . . . 7 (𝐵 ⊆ ℕ → (𝐹𝐵):ℕ⟶ℝ)
5133, 50syl 17 . . . . . 6 (𝜑 → (𝐹𝐵):ℕ⟶ℝ)
52 ffvelrn 6357 . . . . . 6 (((𝐹𝐵):ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5351, 21, 52syl2an 494 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5449, 53fsumrecl 14465 . . . 4 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ)
55 readdcan 10210 . . . 4 ((Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5646, 48, 54, 55syl3anc 1326 . . 3 (𝜑 → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5756adantr 481 . 2 ((𝜑𝜓) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5844, 57mpbid 222 1 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cdif 3571  wss 3574  ifcif 4086  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  3c3 11071  cz 11377  cuz 11687  ...cfz 12326  cexp 12860  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  rpnnen2lem11  14953
  Copyright terms: Public domain W3C validator