| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rtrclreclem1 | Structured version Visualization version GIF version | ||
| Description: The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) |
| Ref | Expression |
|---|---|
| rtrclreclem.1 | ⊢ (𝜑 → Rel 𝑅) |
| rtrclreclem.2 | ⊢ (𝜑 → 𝑅 ∈ V) |
| Ref | Expression |
|---|---|
| rtrclreclem1 | ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 11307 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 2 | ssid 3624 | . . . . . 6 ⊢ ( I ↾ ∪ ∪ 𝑅) ⊆ ( I ↾ ∪ ∪ 𝑅) | |
| 3 | rtrclreclem.1 | . . . . . . 7 ⊢ (𝜑 → Rel 𝑅) | |
| 4 | rtrclreclem.2 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 5 | 3, 4 | relexp0d 13764 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
| 6 | 2, 5 | syl5sseqr 3654 | . . . . 5 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) |
| 7 | oveq2 6658 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟0)) | |
| 8 | 7 | sseq2d 3633 | . . . . . 6 ⊢ (𝑛 = 0 → (( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0))) |
| 9 | 8 | rspcev 3309 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
| 10 | 1, 6, 9 | sylancr 695 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
| 11 | ssiun 4562 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 13 | nn0ex 11298 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 14 | ovex 6678 | . . . . 5 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
| 15 | 13, 14 | iunex 7147 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
| 16 | oveq1 6657 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
| 17 | 16 | iuneq2d 4547 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 18 | eqid 2622 | . . . . 5 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
| 19 | 17, 18 | fvmptg 6280 | . . . 4 ⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 20 | 4, 15, 19 | sylancl 694 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 21 | 12, 20 | sseqtr4d 3642 | . 2 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
| 22 | df-rtrclrec 13796 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
| 23 | fveq1 6190 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
| 24 | 23 | sseq2d 3633 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
| 25 | 24 | imbi2d 330 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
| 26 | 22, 25 | ax-mp 5 | . 2 ⊢ ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
| 27 | 21, 26 | mpbir 221 | 1 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 ∪ cuni 4436 ∪ ciun 4520 ↦ cmpt 4729 I cid 5023 ↾ cres 5116 Rel wrel 5119 ‘cfv 5888 (class class class)co 6650 0cc0 9936 ℕ0cn0 11292 ↑𝑟crelexp 13760 t*reccrtrcl 13795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-nn 11021 df-n0 11293 df-relexp 13761 df-rtrclrec 13796 |
| This theorem is referenced by: dfrtrcl2 13802 |
| Copyright terms: Public domain | W3C validator |