![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saliuncl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saliuncl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
saliuncl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
saliuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
saliuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saliuncl.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
2 | 1 | ralrimiva 2966 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
3 | dfiun3g 5378 | . . 3 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) |
5 | saliuncl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | eqid 2622 | . . . . . 6 ⊢ (𝑘 ∈ 𝐾 ↦ 𝐸) = (𝑘 ∈ 𝐾 ↦ 𝐸) | |
7 | 6 | rnmptss 6392 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
9 | 5, 8 | ssexd 4805 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ V) |
10 | elpwg 4166 | . . . . 5 ⊢ (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ V → (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆)) |
12 | 8, 11 | mpbird 247 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆) |
13 | saliuncl.kct | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
14 | 1stcrestlem 21255 | . . . 4 ⊢ (𝐾 ≼ ω → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) |
16 | 5, 12, 15 | salunicl 40536 | . 2 ⊢ (𝜑 → ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝑆) |
17 | 4, 16 | eqeltrd 2701 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 ∪ ciun 4520 class class class wbr 4653 ↦ cmpt 4729 ran crn 5115 ωcom 7065 ≼ cdom 7953 SAlgcsalg 40528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-card 8765 df-acn 8768 df-salg 40529 |
This theorem is referenced by: saliincl 40545 subsaliuncl 40576 meaiunlelem 40685 meaiuninclem 40697 meaiininclem 40700 caratheodory 40742 opnvonmbllem2 40847 ctvonmbl 40903 vonct 40907 smfaddlem2 40972 smflimlem1 40979 smfresal 40995 smfmullem4 41001 |
Copyright terms: Public domain | W3C validator |