Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiunlelem Structured version   Visualization version   GIF version

Theorem meaiunlelem 40685
Description: The measure of the union of countable sets is less or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaiunlelem.1 𝑛𝜑
meaiunlelem.m (𝜑𝑀 ∈ Meas)
meaiunlelem.s 𝑆 = dom 𝑀
meaiunlelem.z 𝑍 = (ℤ𝑁)
meaiunlelem.e (𝜑𝐸:𝑍𝑆)
meaiunlelem.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
meaiunlelem (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))))
Distinct variable groups:   𝑖,𝐸,𝑛   𝑛,𝑀   𝑖,𝑁,𝑛   𝑆,𝑖,𝑛   𝑛,𝑍   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑖,𝑛)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem meaiunlelem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 meaiunlelem.1 . . . . . . 7 𝑛𝜑
2 meaiunlelem.z . . . . . . 7 𝑍 = (ℤ𝑁)
3 meaiunlelem.e . . . . . . 7 (𝜑𝐸:𝑍𝑆)
4 meaiunlelem.f . . . . . . 7 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
51, 2, 3, 4iundjiun 40677 . . . . . 6 (𝜑 → ((∀𝑥𝑍 𝑛 ∈ (𝑁...𝑥)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑥)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
65simplrd 793 . . . . 5 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
76eqcomd 2628 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) = 𝑛𝑍 (𝐹𝑛))
87fveq2d 6195 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = (𝑀 𝑛𝑍 (𝐹𝑛)))
9 meaiunlelem.m . . . 4 (𝜑𝑀 ∈ Meas)
10 meaiunlelem.s . . . 4 𝑆 = dom 𝑀
119, 10dmmeasal 40669 . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
1211adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
133ffvelrnda 6359 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑆)
14 fzofi 12773 . . . . . . . . . . 11 (𝑁..^𝑛) ∈ Fin
15 isfinite 8549 . . . . . . . . . . . . 13 ((𝑁..^𝑛) ∈ Fin ↔ (𝑁..^𝑛) ≺ ω)
1615biimpi 206 . . . . . . . . . . . 12 ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≺ ω)
17 sdomdom 7983 . . . . . . . . . . . 12 ((𝑁..^𝑛) ≺ ω → (𝑁..^𝑛) ≼ ω)
1816, 17syl 17 . . . . . . . . . . 11 ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≼ ω)
1914, 18ax-mp 5 . . . . . . . . . 10 (𝑁..^𝑛) ≼ ω
2019a1i 11 . . . . . . . . 9 (𝜑 → (𝑁..^𝑛) ≼ ω)
213adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍𝑆)
22 elfzouz 12474 . . . . . . . . . . . 12 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ (ℤ𝑁))
232eqcomi 2631 . . . . . . . . . . . 12 (ℤ𝑁) = 𝑍
2422, 23syl6eleq 2711 . . . . . . . . . . 11 (𝑖 ∈ (𝑁..^𝑛) → 𝑖𝑍)
2524adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑍)
2621, 25ffvelrnd 6360 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ 𝑆)
2711, 20, 26saliuncl 40542 . . . . . . . 8 (𝜑 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ 𝑆)
2827adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ 𝑆)
29 saldifcl2 40546 . . . . . . 7 ((𝑆 ∈ SAlg ∧ (𝐸𝑛) ∈ 𝑆 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ 𝑆) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ 𝑆)
3012, 13, 28, 29syl3anc 1326 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ 𝑆)
311, 30, 4fmptdf 6387 . . . . 5 (𝜑𝐹:𝑍𝑆)
3231ffvelrnda 6359 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑆)
33 eqid 2622 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
3433uzct 39232 . . . . . 6 (ℤ𝑁) ≼ ω
352, 34eqbrtri 4674 . . . . 5 𝑍 ≼ ω
3635a1i 11 . . . 4 (𝜑𝑍 ≼ ω)
375simprd 479 . . . 4 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
381, 9, 10, 32, 36, 37meadjiun 40683 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
39 eqidd 2623 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
408, 38, 393eqtrd 2660 . 2 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
41 fvex 6201 . . . . 5 (ℤ𝑁) ∈ V
422, 41eqeltri 2697 . . . 4 𝑍 ∈ V
4342a1i 11 . . 3 (𝜑𝑍 ∈ V)
449adantr 481 . . . 4 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
4544, 10, 32meacl 40675 . . 3 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,]+∞))
4644, 10, 13meacl 40675 . . 3 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ (0[,]+∞))
47 simpr 477 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛𝑍)
48 difexg 4808 . . . . . . 7 ((𝐸𝑛) ∈ 𝑆 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
4913, 48syl 17 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
504fvmpt2 6291 . . . . . 6 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
5147, 49, 50syl2anc 693 . . . . 5 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
52 difssd 3738 . . . . 5 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
5351, 52eqsstrd 3639 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
5444, 10, 32, 13, 53meassle 40680 . . 3 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ≤ (𝑀‘(𝐸𝑛)))
551, 43, 45, 46, 54sge0lempt 40627 . 2 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))))
5640, 55eqbrtrd 4675 1 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  Vcvv 3200  cdif 3571   ciun 4520  Disj wdisj 4620   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  ωcom 7065  cdom 7953  csdm 7954  Fincfn 7955  cle 10075  cuz 11687  ...cfz 12326  ..^cfzo 12465  SAlgcsalg 40528  Σ^csumge0 40579  Meascmea 40666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-salg 40529  df-sumge0 40580  df-mea 40667
This theorem is referenced by:  meaiunle  40686
  Copyright terms: Public domain W3C validator