HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel3 Structured version   Visualization version   GIF version

Theorem shsel3 28174
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
Assertion
Ref Expression
shsel3 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem shsel3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 shsel 28173 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
2 id 22 . . . . . . . 8 (𝐶 = (𝑥 + 𝑧) → 𝐶 = (𝑥 + 𝑧))
3 shel 28068 . . . . . . . . . . 11 ((𝐴S𝑥𝐴) → 𝑥 ∈ ℋ)
4 shel 28068 . . . . . . . . . . 11 ((𝐵S𝑧𝐵) → 𝑧 ∈ ℋ)
5 hvaddsubval 27890 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
63, 4, 5syl2an 494 . . . . . . . . . 10 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
76an4s 869 . . . . . . . . 9 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
87anassrs 680 . . . . . . . 8 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
92, 8sylan9eqr 2678 . . . . . . 7 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → 𝐶 = (𝑥 (-1 · 𝑧)))
10 neg1cn 11124 . . . . . . . . . . 11 -1 ∈ ℂ
11 shmulcl 28075 . . . . . . . . . . 11 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1210, 11mp3an2 1412 . . . . . . . . . 10 ((𝐵S𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1312adantll 750 . . . . . . . . 9 (((𝐴S𝐵S ) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1413adantlr 751 . . . . . . . 8 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
15 oveq2 6658 . . . . . . . . . 10 (𝑦 = (-1 · 𝑧) → (𝑥 𝑦) = (𝑥 (-1 · 𝑧)))
1615eqeq2d 2632 . . . . . . . . 9 (𝑦 = (-1 · 𝑧) → (𝐶 = (𝑥 𝑦) ↔ 𝐶 = (𝑥 (-1 · 𝑧))))
1716rspcev 3309 . . . . . . . 8 (((-1 · 𝑧) ∈ 𝐵𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
1814, 17sylan 488 . . . . . . 7 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
199, 18syldan 487 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
2019ex 450 . . . . 5 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (𝐶 = (𝑥 + 𝑧) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
2120rexlimdva 3031 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
22 id 22 . . . . . . . 8 (𝐶 = (𝑥 𝑦) → 𝐶 = (𝑥 𝑦))
23 shel 28068 . . . . . . . . . . 11 ((𝐵S𝑦𝐵) → 𝑦 ∈ ℋ)
24 hvsubval 27873 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
253, 23, 24syl2an 494 . . . . . . . . . 10 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2625an4s 869 . . . . . . . . 9 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2726anassrs 680 . . . . . . . 8 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2822, 27sylan9eqr 2678 . . . . . . 7 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → 𝐶 = (𝑥 + (-1 · 𝑦)))
29 shmulcl 28075 . . . . . . . . . . 11 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
3010, 29mp3an2 1412 . . . . . . . . . 10 ((𝐵S𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
3130adantll 750 . . . . . . . . 9 (((𝐴S𝐵S ) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
3231adantlr 751 . . . . . . . 8 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
33 oveq2 6658 . . . . . . . . . 10 (𝑧 = (-1 · 𝑦) → (𝑥 + 𝑧) = (𝑥 + (-1 · 𝑦)))
3433eqeq2d 2632 . . . . . . . . 9 (𝑧 = (-1 · 𝑦) → (𝐶 = (𝑥 + 𝑧) ↔ 𝐶 = (𝑥 + (-1 · 𝑦))))
3534rspcev 3309 . . . . . . . 8 (((-1 · 𝑦) ∈ 𝐵𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3632, 35sylan 488 . . . . . . 7 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3728, 36syldan 487 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3837ex 450 . . . . 5 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝐶 = (𝑥 𝑦) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
3938rexlimdva 3031 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑦𝐵 𝐶 = (𝑥 𝑦) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
4021, 39impbid 202 . . 3 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
4140rexbidva 3049 . 2 ((𝐴S𝐵S ) → (∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
421, 41bitrd 268 1 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  (class class class)co 6650  cc 9934  1c1 9937  -cneg 10267  chil 27776   + cva 27777   · csm 27778   cmv 27782   S csh 27785   + cph 27788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-ablo 27399  df-hvsub 27828  df-sh 28064  df-shs 28167
This theorem is referenced by:  pjimai  29035
  Copyright terms: Public domain W3C validator