MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem7 Structured version   Visualization version   GIF version

Theorem fin1a2lem7 9228
Description: Lemma for fin1a2 9237. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))
fin1a2lem.aa 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem7 ((𝐴𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐸
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥,𝑦)   𝐸(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem fin1a2lem7
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 peano1 7085 . . . . . 6 ∅ ∈ ω
2 ne0i 3921 . . . . . 6 (∅ ∈ ω → ω ≠ ∅)
3 brwdomn0 8474 . . . . . 6 (ω ≠ ∅ → (ω ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→ω))
41, 2, 3mp2b 10 . . . . 5 (ω ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→ω)
5 vex 3203 . . . . . . . . . 10 𝑓 ∈ V
6 fof 6115 . . . . . . . . . 10 (𝑓:𝐴onto→ω → 𝑓:𝐴⟶ω)
7 dmfex 7124 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:𝐴⟶ω) → 𝐴 ∈ V)
85, 6, 7sylancr 695 . . . . . . . . 9 (𝑓:𝐴onto→ω → 𝐴 ∈ V)
9 cnvimass 5485 . . . . . . . . . 10 (𝑓 “ ran 𝐸) ⊆ dom 𝑓
10 fdm 6051 . . . . . . . . . . 11 (𝑓:𝐴⟶ω → dom 𝑓 = 𝐴)
116, 10syl 17 . . . . . . . . . 10 (𝑓:𝐴onto→ω → dom 𝑓 = 𝐴)
129, 11syl5sseq 3653 . . . . . . . . 9 (𝑓:𝐴onto→ω → (𝑓 “ ran 𝐸) ⊆ 𝐴)
138, 12sselpwd 4807 . . . . . . . 8 (𝑓:𝐴onto→ω → (𝑓 “ ran 𝐸) ∈ 𝒫 𝐴)
14 fin1a2lem.b . . . . . . . . . . . . . 14 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))
1514fin1a2lem4 9225 . . . . . . . . . . . . 13 𝐸:ω–1-1→ω
16 f1cnv 6160 . . . . . . . . . . . . 13 (𝐸:ω–1-1→ω → 𝐸:ran 𝐸1-1-onto→ω)
17 f1ofo 6144 . . . . . . . . . . . . 13 (𝐸:ran 𝐸1-1-onto→ω → 𝐸:ran 𝐸onto→ω)
1815, 16, 17mp2b 10 . . . . . . . . . . . 12 𝐸:ran 𝐸onto→ω
19 fofun 6116 . . . . . . . . . . . 12 (𝐸:ran 𝐸onto→ω → Fun 𝐸)
2018, 19ax-mp 5 . . . . . . . . . . 11 Fun 𝐸
215resex 5443 . . . . . . . . . . 11 (𝑓 ↾ (𝑓 “ ran 𝐸)) ∈ V
22 cofunexg 7130 . . . . . . . . . . 11 ((Fun 𝐸 ∧ (𝑓 ↾ (𝑓 “ ran 𝐸)) ∈ V) → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V)
2320, 21, 22mp2an 708 . . . . . . . . . 10 (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V
24 fofun 6116 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → Fun 𝑓)
25 fores 6124 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝑓 “ ran 𝐸) ⊆ dom 𝑓) → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)))
2624, 9, 25sylancl 694 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)))
27 f1f 6101 . . . . . . . . . . . . . . 15 (𝐸:ω–1-1→ω → 𝐸:ω⟶ω)
28 frn 6053 . . . . . . . . . . . . . . 15 (𝐸:ω⟶ω → ran 𝐸 ⊆ ω)
2915, 27, 28mp2b 10 . . . . . . . . . . . . . 14 ran 𝐸 ⊆ ω
30 foimacnv 6154 . . . . . . . . . . . . . 14 ((𝑓:𝐴onto→ω ∧ ran 𝐸 ⊆ ω) → (𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸)
3129, 30mpan2 707 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸)
32 foeq3 6113 . . . . . . . . . . . . 13 ((𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸 → ((𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸))
3331, 32syl 17 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → ((𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸))
3426, 33mpbid 222 . . . . . . . . . . 11 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸)
35 foco 6125 . . . . . . . . . . 11 ((𝐸:ran 𝐸onto→ω ∧ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸) → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω)
3618, 34, 35sylancr 695 . . . . . . . . . 10 (𝑓:𝐴onto→ω → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω)
37 fowdom 8476 . . . . . . . . . 10 (((𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V ∧ (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω) → ω ≼* (𝑓 “ ran 𝐸))
3823, 36, 37sylancr 695 . . . . . . . . 9 (𝑓:𝐴onto→ω → ω ≼* (𝑓 “ ran 𝐸))
395cnvex 7113 . . . . . . . . . . . 12 𝑓 ∈ V
4039imaex 7104 . . . . . . . . . . 11 (𝑓 “ ran 𝐸) ∈ V
41 isfin3-2 9189 . . . . . . . . . . 11 ((𝑓 “ ran 𝐸) ∈ V → ((𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬ ω ≼* (𝑓 “ ran 𝐸)))
4240, 41ax-mp 5 . . . . . . . . . 10 ((𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬ ω ≼* (𝑓 “ ran 𝐸))
4342con2bii 347 . . . . . . . . 9 (ω ≼* (𝑓 “ ran 𝐸) ↔ ¬ (𝑓 “ ran 𝐸) ∈ FinIII)
4438, 43sylib 208 . . . . . . . 8 (𝑓:𝐴onto→ω → ¬ (𝑓 “ ran 𝐸) ∈ FinIII)
45 fin1a2lem.aa . . . . . . . . . . . . . . 15 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
4614, 45fin1a2lem6 9227 . . . . . . . . . . . . . 14 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
47 f1ocnv 6149 . . . . . . . . . . . . . 14 ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸) → (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran 𝐸)
48 f1ofo 6144 . . . . . . . . . . . . . 14 ((𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran 𝐸(𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸)
4946, 47, 48mp2b 10 . . . . . . . . . . . . 13 (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸
50 foco 6125 . . . . . . . . . . . . 13 ((𝐸:ran 𝐸onto→ω ∧ (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸) → (𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω)
5118, 49, 50mp2an 708 . . . . . . . . . . . 12 (𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω
52 fofun 6116 . . . . . . . . . . . 12 ((𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω → Fun (𝐸(𝑆 ↾ ran 𝐸)))
5351, 52ax-mp 5 . . . . . . . . . . 11 Fun (𝐸(𝑆 ↾ ran 𝐸))
545resex 5443 . . . . . . . . . . 11 (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))) ∈ V
55 cofunexg 7130 . . . . . . . . . . 11 ((Fun (𝐸(𝑆 ↾ ran 𝐸)) ∧ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))) ∈ V) → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V)
5653, 54, 55mp2an 708 . . . . . . . . . 10 ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V
57 difss 3737 . . . . . . . . . . . . . 14 (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ 𝐴
5857, 11syl5sseqr 3654 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ dom 𝑓)
59 fores 6124 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ dom 𝑓) → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
6024, 58, 59syl2anc 693 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
61 funcnvcnv 5956 . . . . . . . . . . . . . . . 16 (Fun 𝑓 → Fun 𝑓)
62 imadif 5973 . . . . . . . . . . . . . . . 16 (Fun 𝑓 → (𝑓 “ (ω ∖ ran 𝐸)) = ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)))
6324, 61, 623syl 18 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto→ω → (𝑓 “ (ω ∖ ran 𝐸)) = ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)))
6463imaeq2d 5466 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (𝑓 “ ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸))))
65 difss 3737 . . . . . . . . . . . . . . 15 (ω ∖ ran 𝐸) ⊆ ω
66 foimacnv 6154 . . . . . . . . . . . . . . 15 ((𝑓:𝐴onto→ω ∧ (ω ∖ ran 𝐸) ⊆ ω) → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸))
6765, 66mpan2 707 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸))
68 fimacnv 6347 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴⟶ω → (𝑓 “ ω) = 𝐴)
696, 68syl 17 . . . . . . . . . . . . . . . 16 (𝑓:𝐴onto→ω → (𝑓 “ ω) = 𝐴)
7069difeq1d 3727 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto→ω → ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)) = (𝐴 ∖ (𝑓 “ ran 𝐸)))
7170imaeq2d 5466 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸))) = (𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
7264, 67, 713eqtr3rd 2665 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸))
73 foeq3 6113 . . . . . . . . . . . . 13 ((𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸) → ((𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)))
7472, 73syl 17 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → ((𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)))
7560, 74mpbid 222 . . . . . . . . . . 11 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸))
76 foco 6125 . . . . . . . . . . 11 (((𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω ∧ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)) → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω)
7751, 75, 76sylancr 695 . . . . . . . . . 10 (𝑓:𝐴onto→ω → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω)
78 fowdom 8476 . . . . . . . . . 10 ((((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V ∧ ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω) → ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)))
7956, 77, 78sylancr 695 . . . . . . . . 9 (𝑓:𝐴onto→ω → ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)))
80 difexg 4808 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ V)
81 isfin3-2 9189 . . . . . . . . . . 11 ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ V → ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬ ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸))))
828, 80, 813syl 18 . . . . . . . . . 10 (𝑓:𝐴onto→ω → ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬ ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸))))
8382con2bid 344 . . . . . . . . 9 (𝑓:𝐴onto→ω → (ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)) ↔ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
8479, 83mpbid 222 . . . . . . . 8 (𝑓:𝐴onto→ω → ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)
85 eleq1 2689 . . . . . . . . . . . 12 (𝑦 = (𝑓 “ ran 𝐸) → (𝑦 ∈ FinIII ↔ (𝑓 “ ran 𝐸) ∈ FinIII))
86 difeq2 3722 . . . . . . . . . . . . 13 (𝑦 = (𝑓 “ ran 𝐸) → (𝐴𝑦) = (𝐴 ∖ (𝑓 “ ran 𝐸)))
8786eleq1d 2686 . . . . . . . . . . . 12 (𝑦 = (𝑓 “ ran 𝐸) → ((𝐴𝑦) ∈ FinIII ↔ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
8885, 87orbi12d 746 . . . . . . . . . . 11 (𝑦 = (𝑓 “ ran 𝐸) → ((𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
8988notbid 308 . . . . . . . . . 10 (𝑦 = (𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ¬ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
90 ioran 511 . . . . . . . . . 10 (¬ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII) ↔ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
9189, 90syl6bb 276 . . . . . . . . 9 (𝑦 = (𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
9291rspcev 3309 . . . . . . . 8 (((𝑓 “ ran 𝐸) ∈ 𝒫 𝐴 ∧ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)) → ∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9313, 44, 84, 92syl12anc 1324 . . . . . . 7 (𝑓:𝐴onto→ω → ∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
94 rexnal 2995 . . . . . . 7 (∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9593, 94sylib 208 . . . . . 6 (𝑓:𝐴onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9695exlimiv 1858 . . . . 5 (∃𝑓 𝑓:𝐴onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
974, 96sylbi 207 . . . 4 (ω ≼* 𝐴 → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9897con2i 134 . . 3 (∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) → ¬ ω ≼* 𝐴)
99 isfin3-2 9189 . . 3 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴))
10098, 99syl5ibr 236 . 2 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) → 𝐴 ∈ FinIII))
101100imp 445 1 ((𝐴𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  ccom 5118  Oncon0 5723  suc csuc 5725  Fun wfun 5882  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  (class class class)co 6650  ωcom 7065  2𝑜c2o 7554   ·𝑜 comu 7558  * cwdom 8462  FinIIIcfin3 9103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wdom 8464  df-card 8765  df-fin4 9109  df-fin3 9110
This theorem is referenced by:  fin1a2lem8  9229
  Copyright terms: Public domain W3C validator