| Step | Hyp | Ref
| Expression |
| 1 | | peano1 7085 |
. . . . . 6
⊢ ∅
∈ ω |
| 2 | | ne0i 3921 |
. . . . . 6
⊢ (∅
∈ ω → ω ≠ ∅) |
| 3 | | brwdomn0 8474 |
. . . . . 6
⊢ (ω
≠ ∅ → (ω ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴–onto→ω)) |
| 4 | 1, 2, 3 | mp2b 10 |
. . . . 5
⊢ (ω
≼* 𝐴
↔ ∃𝑓 𝑓:𝐴–onto→ω) |
| 5 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
| 6 | | fof 6115 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–onto→ω → 𝑓:𝐴⟶ω) |
| 7 | | dmfex 7124 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ V ∧ 𝑓:𝐴⟶ω) → 𝐴 ∈ V) |
| 8 | 5, 6, 7 | sylancr 695 |
. . . . . . . . 9
⊢ (𝑓:𝐴–onto→ω → 𝐴 ∈ V) |
| 9 | | cnvimass 5485 |
. . . . . . . . . 10
⊢ (◡𝑓 “ ran 𝐸) ⊆ dom 𝑓 |
| 10 | | fdm 6051 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴⟶ω → dom 𝑓 = 𝐴) |
| 11 | 6, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–onto→ω → dom 𝑓 = 𝐴) |
| 12 | 9, 11 | syl5sseq 3653 |
. . . . . . . . 9
⊢ (𝑓:𝐴–onto→ω → (◡𝑓 “ ran 𝐸) ⊆ 𝐴) |
| 13 | 8, 12 | sselpwd 4807 |
. . . . . . . 8
⊢ (𝑓:𝐴–onto→ω → (◡𝑓 “ ran 𝐸) ∈ 𝒫 𝐴) |
| 14 | | fin1a2lem.b |
. . . . . . . . . . . . . 14
⊢ 𝐸 = (𝑥 ∈ ω ↦
(2𝑜 ·𝑜 𝑥)) |
| 15 | 14 | fin1a2lem4 9225 |
. . . . . . . . . . . . 13
⊢ 𝐸:ω–1-1→ω |
| 16 | | f1cnv 6160 |
. . . . . . . . . . . . 13
⊢ (𝐸:ω–1-1→ω → ◡𝐸:ran 𝐸–1-1-onto→ω) |
| 17 | | f1ofo 6144 |
. . . . . . . . . . . . 13
⊢ (◡𝐸:ran 𝐸–1-1-onto→ω → ◡𝐸:ran 𝐸–onto→ω) |
| 18 | 15, 16, 17 | mp2b 10 |
. . . . . . . . . . . 12
⊢ ◡𝐸:ran 𝐸–onto→ω |
| 19 | | fofun 6116 |
. . . . . . . . . . . 12
⊢ (◡𝐸:ran 𝐸–onto→ω → Fun ◡𝐸) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . 11
⊢ Fun ◡𝐸 |
| 21 | 5 | resex 5443 |
. . . . . . . . . . 11
⊢ (𝑓 ↾ (◡𝑓 “ ran 𝐸)) ∈ V |
| 22 | | cofunexg 7130 |
. . . . . . . . . . 11
⊢ ((Fun
◡𝐸 ∧ (𝑓 ↾ (◡𝑓 “ ran 𝐸)) ∈ V) → (◡𝐸 ∘ (𝑓 ↾ (◡𝑓 “ ran 𝐸))) ∈ V) |
| 23 | 20, 21, 22 | mp2an 708 |
. . . . . . . . . 10
⊢ (◡𝐸 ∘ (𝑓 ↾ (◡𝑓 “ ran 𝐸))) ∈ V |
| 24 | | fofun 6116 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–onto→ω → Fun 𝑓) |
| 25 | | fores 6124 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝑓 ∧ (◡𝑓 “ ran 𝐸) ⊆ dom 𝑓) → (𝑓 ↾ (◡𝑓 “ ran 𝐸)):(◡𝑓 “ ran 𝐸)–onto→(𝑓 “ (◡𝑓 “ ran 𝐸))) |
| 26 | 24, 9, 25 | sylancl 694 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐴–onto→ω → (𝑓 ↾ (◡𝑓 “ ran 𝐸)):(◡𝑓 “ ran 𝐸)–onto→(𝑓 “ (◡𝑓 “ ran 𝐸))) |
| 27 | | f1f 6101 |
. . . . . . . . . . . . . . 15
⊢ (𝐸:ω–1-1→ω → 𝐸:ω⟶ω) |
| 28 | | frn 6053 |
. . . . . . . . . . . . . . 15
⊢ (𝐸:ω⟶ω →
ran 𝐸 ⊆
ω) |
| 29 | 15, 27, 28 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢ ran 𝐸 ⊆
ω |
| 30 | | foimacnv 6154 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴–onto→ω ∧ ran 𝐸 ⊆ ω) → (𝑓 “ (◡𝑓 “ ran 𝐸)) = ran 𝐸) |
| 31 | 29, 30 | mpan2 707 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–onto→ω → (𝑓 “ (◡𝑓 “ ran 𝐸)) = ran 𝐸) |
| 32 | | foeq3 6113 |
. . . . . . . . . . . . 13
⊢ ((𝑓 “ (◡𝑓 “ ran 𝐸)) = ran 𝐸 → ((𝑓 ↾ (◡𝑓 “ ran 𝐸)):(◡𝑓 “ ran 𝐸)–onto→(𝑓 “ (◡𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (◡𝑓 “ ran 𝐸)):(◡𝑓 “ ran 𝐸)–onto→ran 𝐸)) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐴–onto→ω → ((𝑓 ↾ (◡𝑓 “ ran 𝐸)):(◡𝑓 “ ran 𝐸)–onto→(𝑓 “ (◡𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (◡𝑓 “ ran 𝐸)):(◡𝑓 “ ran 𝐸)–onto→ran 𝐸)) |
| 34 | 26, 33 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–onto→ω → (𝑓 ↾ (◡𝑓 “ ran 𝐸)):(◡𝑓 “ ran 𝐸)–onto→ran 𝐸) |
| 35 | | foco 6125 |
. . . . . . . . . . 11
⊢ ((◡𝐸:ran 𝐸–onto→ω ∧ (𝑓 ↾ (◡𝑓 “ ran 𝐸)):(◡𝑓 “ ran 𝐸)–onto→ran 𝐸) → (◡𝐸 ∘ (𝑓 ↾ (◡𝑓 “ ran 𝐸))):(◡𝑓 “ ran 𝐸)–onto→ω) |
| 36 | 18, 34, 35 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–onto→ω → (◡𝐸 ∘ (𝑓 ↾ (◡𝑓 “ ran 𝐸))):(◡𝑓 “ ran 𝐸)–onto→ω) |
| 37 | | fowdom 8476 |
. . . . . . . . . 10
⊢ (((◡𝐸 ∘ (𝑓 ↾ (◡𝑓 “ ran 𝐸))) ∈ V ∧ (◡𝐸 ∘ (𝑓 ↾ (◡𝑓 “ ran 𝐸))):(◡𝑓 “ ran 𝐸)–onto→ω) → ω ≼*
(◡𝑓 “ ran 𝐸)) |
| 38 | 23, 36, 37 | sylancr 695 |
. . . . . . . . 9
⊢ (𝑓:𝐴–onto→ω → ω ≼*
(◡𝑓 “ ran 𝐸)) |
| 39 | 5 | cnvex 7113 |
. . . . . . . . . . . 12
⊢ ◡𝑓 ∈ V |
| 40 | 39 | imaex 7104 |
. . . . . . . . . . 11
⊢ (◡𝑓 “ ran 𝐸) ∈ V |
| 41 | | isfin3-2 9189 |
. . . . . . . . . . 11
⊢ ((◡𝑓 “ ran 𝐸) ∈ V → ((◡𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬
ω ≼* (◡𝑓 “ ran 𝐸))) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((◡𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬
ω ≼* (◡𝑓 “ ran 𝐸)) |
| 43 | 42 | con2bii 347 |
. . . . . . . . 9
⊢ (ω
≼* (◡𝑓 “ ran 𝐸) ↔ ¬ (◡𝑓 “ ran 𝐸) ∈ FinIII) |
| 44 | 38, 43 | sylib 208 |
. . . . . . . 8
⊢ (𝑓:𝐴–onto→ω → ¬ (◡𝑓 “ ran 𝐸) ∈ FinIII) |
| 45 | | fin1a2lem.aa |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
| 46 | 14, 45 | fin1a2lem6 9227 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ↾ ran 𝐸):ran 𝐸–1-1-onto→(ω ∖ ran 𝐸) |
| 47 | | f1ocnv 6149 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ↾ ran 𝐸):ran 𝐸–1-1-onto→(ω ∖ ran 𝐸) → ◡(𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran
𝐸) |
| 48 | | f1ofo 6144 |
. . . . . . . . . . . . . 14
⊢ (◡(𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran
𝐸 → ◡(𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸) |
| 49 | 46, 47, 48 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ ◡(𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸 |
| 50 | | foco 6125 |
. . . . . . . . . . . . 13
⊢ ((◡𝐸:ran 𝐸–onto→ω ∧ ◡(𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸) → (◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω) |
| 51 | 18, 49, 50 | mp2an 708 |
. . . . . . . . . . . 12
⊢ (◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω |
| 52 | | fofun 6116 |
. . . . . . . . . . . 12
⊢ ((◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω → Fun (◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸))) |
| 53 | 51, 52 | ax-mp 5 |
. . . . . . . . . . 11
⊢ Fun
(◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)) |
| 54 | 5 | resex 5443 |
. . . . . . . . . . 11
⊢ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))) ∈ V |
| 55 | | cofunexg 7130 |
. . . . . . . . . . 11
⊢ ((Fun
(◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)) ∧ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))) ∈ V) → ((◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸)))) ∈ V) |
| 56 | 53, 54, 55 | mp2an 708 |
. . . . . . . . . 10
⊢ ((◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸)))) ∈ V |
| 57 | | difss 3737 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ⊆ 𝐴 |
| 58 | 57, 11 | syl5sseqr 3654 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–onto→ω → (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ⊆ dom 𝑓) |
| 59 | | fores 6124 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝑓 ∧ (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ⊆ dom 𝑓) → (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (◡𝑓 “ ran 𝐸)))) |
| 60 | 24, 58, 59 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐴–onto→ω → (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (◡𝑓 “ ran 𝐸)))) |
| 61 | | funcnvcnv 5956 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝑓 → Fun ◡◡𝑓) |
| 62 | | imadif 5973 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
◡◡𝑓 → (◡𝑓 “ (ω ∖ ran 𝐸)) = ((◡𝑓 “ ω) ∖ (◡𝑓 “ ran 𝐸))) |
| 63 | 24, 61, 62 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴–onto→ω → (◡𝑓 “ (ω ∖ ran 𝐸)) = ((◡𝑓 “ ω) ∖ (◡𝑓 “ ran 𝐸))) |
| 64 | 63 | imaeq2d 5466 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–onto→ω → (𝑓 “ (◡𝑓 “ (ω ∖ ran 𝐸))) = (𝑓 “ ((◡𝑓 “ ω) ∖ (◡𝑓 “ ran 𝐸)))) |
| 65 | | difss 3737 |
. . . . . . . . . . . . . . 15
⊢ (ω
∖ ran 𝐸) ⊆
ω |
| 66 | | foimacnv 6154 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝐴–onto→ω ∧ (ω ∖ ran 𝐸) ⊆ ω) → (𝑓 “ (◡𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸)) |
| 67 | 65, 66 | mpan2 707 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–onto→ω → (𝑓 “ (◡𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸)) |
| 68 | | fimacnv 6347 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝐴⟶ω → (◡𝑓 “ ω) = 𝐴) |
| 69 | 6, 68 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐴–onto→ω → (◡𝑓 “ ω) = 𝐴) |
| 70 | 69 | difeq1d 3727 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴–onto→ω → ((◡𝑓 “ ω) ∖ (◡𝑓 “ ran 𝐸)) = (𝐴 ∖ (◡𝑓 “ ran 𝐸))) |
| 71 | 70 | imaeq2d 5466 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–onto→ω → (𝑓 “ ((◡𝑓 “ ω) ∖ (◡𝑓 “ ran 𝐸))) = (𝑓 “ (𝐴 ∖ (◡𝑓 “ ran 𝐸)))) |
| 72 | 64, 67, 71 | 3eqtr3rd 2665 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–onto→ω → (𝑓 “ (𝐴 ∖ (◡𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸)) |
| 73 | | foeq3 6113 |
. . . . . . . . . . . . 13
⊢ ((𝑓 “ (𝐴 ∖ (◡𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸) → ((𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (◡𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸))) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐴–onto→ω → ((𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (◡𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸))) |
| 75 | 60, 74 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–onto→ω → (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)) |
| 76 | | foco 6125 |
. . . . . . . . . . 11
⊢ (((◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω ∧ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)) → ((◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸)))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→ω) |
| 77 | 51, 75, 76 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–onto→ω → ((◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸)))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→ω) |
| 78 | | fowdom 8476 |
. . . . . . . . . 10
⊢ ((((◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸)))) ∈ V ∧ ((◡𝐸 ∘ ◡(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (◡𝑓 “ ran 𝐸)))):(𝐴 ∖ (◡𝑓 “ ran 𝐸))–onto→ω) → ω ≼*
(𝐴 ∖ (◡𝑓 “ ran 𝐸))) |
| 79 | 56, 77, 78 | sylancr 695 |
. . . . . . . . 9
⊢ (𝑓:𝐴–onto→ω → ω ≼*
(𝐴 ∖ (◡𝑓 “ ran 𝐸))) |
| 80 | | difexg 4808 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈ V) |
| 81 | | isfin3-2 9189 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈ V → ((𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬
ω ≼* (𝐴 ∖ (◡𝑓 “ ran 𝐸)))) |
| 82 | 8, 80, 81 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–onto→ω → ((𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬
ω ≼* (𝐴 ∖ (◡𝑓 “ ran 𝐸)))) |
| 83 | 82 | con2bid 344 |
. . . . . . . . 9
⊢ (𝑓:𝐴–onto→ω → (ω ≼*
(𝐴 ∖ (◡𝑓 “ ran 𝐸)) ↔ ¬ (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈
FinIII)) |
| 84 | 79, 83 | mpbid 222 |
. . . . . . . 8
⊢ (𝑓:𝐴–onto→ω → ¬ (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈
FinIII) |
| 85 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑦 = (◡𝑓 “ ran 𝐸) → (𝑦 ∈ FinIII ↔ (◡𝑓 “ ran 𝐸) ∈
FinIII)) |
| 86 | | difeq2 3722 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (◡𝑓 “ ran 𝐸) → (𝐴 ∖ 𝑦) = (𝐴 ∖ (◡𝑓 “ ran 𝐸))) |
| 87 | 86 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑦 = (◡𝑓 “ ran 𝐸) → ((𝐴 ∖ 𝑦) ∈ FinIII ↔ (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈
FinIII)) |
| 88 | 85, 87 | orbi12d 746 |
. . . . . . . . . . 11
⊢ (𝑦 = (◡𝑓 “ ran 𝐸) → ((𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII) ↔ ((◡𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈
FinIII))) |
| 89 | 88 | notbid 308 |
. . . . . . . . . 10
⊢ (𝑦 = (◡𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII) ↔ ¬
((◡𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈
FinIII))) |
| 90 | | ioran 511 |
. . . . . . . . . 10
⊢ (¬
((◡𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈ FinIII) ↔ (¬
(◡𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬
(𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈
FinIII)) |
| 91 | 89, 90 | syl6bb 276 |
. . . . . . . . 9
⊢ (𝑦 = (◡𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII) ↔ (¬
(◡𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬
(𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈
FinIII))) |
| 92 | 91 | rspcev 3309 |
. . . . . . . 8
⊢ (((◡𝑓 “ ran 𝐸) ∈ 𝒫 𝐴 ∧ (¬ (◡𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬
(𝐴 ∖ (◡𝑓 “ ran 𝐸)) ∈ FinIII)) →
∃𝑦 ∈ 𝒫
𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII)) |
| 93 | 13, 44, 84, 92 | syl12anc 1324 |
. . . . . . 7
⊢ (𝑓:𝐴–onto→ω → ∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII)) |
| 94 | | rexnal 2995 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨
(𝐴 ∖ 𝑦) ∈ FinIII)
↔ ¬ ∀𝑦
∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨
(𝐴 ∖ 𝑦) ∈
FinIII)) |
| 95 | 93, 94 | sylib 208 |
. . . . . 6
⊢ (𝑓:𝐴–onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII)) |
| 96 | 95 | exlimiv 1858 |
. . . . 5
⊢
(∃𝑓 𝑓:𝐴–onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII)) |
| 97 | 4, 96 | sylbi 207 |
. . . 4
⊢ (ω
≼* 𝐴
→ ¬ ∀𝑦
∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨
(𝐴 ∖ 𝑦) ∈
FinIII)) |
| 98 | 97 | con2i 134 |
. . 3
⊢
(∀𝑦 ∈
𝒫 𝐴(𝑦 ∈ FinIII ∨
(𝐴 ∖ 𝑦) ∈ FinIII)
→ ¬ ω ≼* 𝐴) |
| 99 | | isfin3-2 9189 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIII ↔ ¬
ω ≼* 𝐴)) |
| 100 | 98, 99 | syl5ibr 236 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII) → 𝐴 ∈
FinIII)) |
| 101 | 100 | imp 445 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII)) → 𝐴 ∈
FinIII) |