MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrvd00 Structured version   Visualization version   GIF version

Theorem uhgrvd00 26430
Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdusgradjvtx.v 𝑉 = (Vtx‘𝐺)
vtxdusgradjvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrvd00 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Distinct variable groups:   𝑣,𝐸   𝑣,𝐺   𝑣,𝑉

Proof of Theorem uhgrvd00
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 vtxdusgradjvtx.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 vtxdusgradjvtx.e . . . . 5 𝐸 = (Edg‘𝐺)
3 eqid 2622 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
41, 2, 3vtxduhgr0edgnel 26390 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ∃𝑒𝐸 𝑣𝑒))
5 ralnex 2992 . . . 4 (∀𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸 𝑣𝑒)
64, 5syl6bbr 278 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑒𝐸 ¬ 𝑣𝑒))
76ralbidva 2985 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒))
8 ralcom 3098 . . . . 5 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒)
9 ralnex2 3045 . . . . 5 (∀𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
108, 9bitri 264 . . . 4 (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒)
11 simpr 477 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒𝐸)
122eleq2i 2693 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
13 uhgredgn0 26023 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1412, 13sylan2b 492 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
15 eldifsn 4317 . . . . . . . . . . 11 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅))
16 elpwi 4168 . . . . . . . . . . . . 13 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
171sseq2i 3630 . . . . . . . . . . . . . 14 (𝑒𝑉𝑒 ⊆ (Vtx‘𝐺))
18 ssn0rex 3936 . . . . . . . . . . . . . . 15 ((𝑒𝑉𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
1918ex 450 . . . . . . . . . . . . . 14 (𝑒𝑉 → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2017, 19sylbir 225 . . . . . . . . . . . . 13 (𝑒 ⊆ (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2116, 20syl 17 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → (𝑒 ≠ ∅ → ∃𝑣𝑉 𝑣𝑒))
2221imp 445 . . . . . . . . . . 11 ((𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅) → ∃𝑣𝑉 𝑣𝑒)
2315, 22sylbi 207 . . . . . . . . . 10 (𝑒 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ∃𝑣𝑉 𝑣𝑒)
2414, 23syl 17 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → ∃𝑣𝑉 𝑣𝑒)
2511, 24jca 554 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
2625ex 450 . . . . . . 7 (𝐺 ∈ UHGraph → (𝑒𝐸 → (𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
2726eximdv 1846 . . . . . 6 (𝐺 ∈ UHGraph → (∃𝑒 𝑒𝐸 → ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒)))
28 n0 3931 . . . . . 6 (𝐸 ≠ ∅ ↔ ∃𝑒 𝑒𝐸)
29 df-rex 2918 . . . . . 6 (∃𝑒𝐸𝑣𝑉 𝑣𝑒 ↔ ∃𝑒(𝑒𝐸 ∧ ∃𝑣𝑉 𝑣𝑒))
3027, 28, 293imtr4g 285 . . . . 5 (𝐺 ∈ UHGraph → (𝐸 ≠ ∅ → ∃𝑒𝐸𝑣𝑉 𝑣𝑒))
3130con3d 148 . . . 4 (𝐺 ∈ UHGraph → (¬ ∃𝑒𝐸𝑣𝑉 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
3210, 31syl5bi 232 . . 3 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 → ¬ 𝐸 ≠ ∅))
33 nne 2798 . . 3 𝐸 ≠ ∅ ↔ 𝐸 = ∅)
3432, 33syl6ib 241 . 2 (𝐺 ∈ UHGraph → (∀𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒𝐸 = ∅))
357, 34sylbid 230 1 (𝐺 ∈ UHGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → 𝐸 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  cfv 5888  0cc0 9936  Vtxcvtx 25874  Edgcedg 25939   UHGraph cuhgr 25951  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-vtxdg 26362
This theorem is referenced by:  usgrvd00  26431  uhgr0edg0rgrb  26470
  Copyright terms: Public domain W3C validator