Proof of Theorem submateqlem1
| Step | Hyp | Ref
| Expression |
| 1 | | submateqlem1.1 |
. . . 4
⊢ (𝜑 → 𝐾 ≤ 𝑀) |
| 2 | | fz1ssnn 12372 |
. . . . . . 7
⊢
(1...(𝑁 − 1))
⊆ ℕ |
| 3 | | submateqlem1.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
| 4 | 2, 3 | sseldi 3601 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 5 | 4 | nnred 11035 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 6 | | submateqlem1.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 7 | 6 | nnred 11035 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 8 | | 1red 10055 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
| 9 | 7, 8 | resubcld 10458 |
. . . . 5
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
| 10 | | elfzle2 12345 |
. . . . . 6
⊢ (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1)) |
| 11 | 3, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑀 ≤ (𝑁 − 1)) |
| 12 | 7 | lem1d 10957 |
. . . . 5
⊢ (𝜑 → (𝑁 − 1) ≤ 𝑁) |
| 13 | 5, 9, 7, 11, 12 | letrd 10194 |
. . . 4
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| 14 | 1, 13 | jca 554 |
. . 3
⊢ (𝜑 → (𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) |
| 15 | 4 | nnzd 11481 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 16 | | fz1ssnn 12372 |
. . . . . 6
⊢
(1...𝑁) ⊆
ℕ |
| 17 | | submateqlem1.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
| 18 | 16, 17 | sseldi 3601 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 19 | 18 | nnzd 11481 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 20 | 6 | nnzd 11481 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 21 | | elfz 12332 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (𝐾...𝑁) ↔ (𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
| 22 | 15, 19, 20, 21 | syl3anc 1326 |
. . 3
⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ↔ (𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
| 23 | 14, 22 | mpbird 247 |
. 2
⊢ (𝜑 → 𝑀 ∈ (𝐾...𝑁)) |
| 24 | 4 | nnnn0d 11351 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 25 | 24 | nn0ge0d 11354 |
. . . . . 6
⊢ (𝜑 → 0 ≤ 𝑀) |
| 26 | | 1re 10039 |
. . . . . . 7
⊢ 1 ∈
ℝ |
| 27 | | addge02 10539 |
. . . . . . 7
⊢ ((1
∈ ℝ ∧ 𝑀
∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) |
| 28 | 26, 5, 27 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) |
| 29 | 25, 28 | mpbid 222 |
. . . . 5
⊢ (𝜑 → 1 ≤ (𝑀 + 1)) |
| 30 | 6 | nnnn0d 11351 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 31 | | nn0ltlem1 11437 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| 32 | 24, 30, 31 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| 33 | 11, 32 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → 𝑀 < 𝑁) |
| 34 | | nnltp1le 11433 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| 35 | 4, 6, 34 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| 36 | 33, 35 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝑀 + 1) ≤ 𝑁) |
| 37 | 29, 36 | jca 554 |
. . . 4
⊢ (𝜑 → (1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)) |
| 38 | 15 | peano2zd 11485 |
. . . . 5
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 39 | | 1zzd 11408 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
| 40 | | elfz 12332 |
. . . . 5
⊢ (((𝑀 + 1) ∈ ℤ ∧ 1
∈ ℤ ∧ 𝑁
∈ ℤ) → ((𝑀
+ 1) ∈ (1...𝑁) ↔
(1 ≤ (𝑀 + 1) ∧
(𝑀 + 1) ≤ 𝑁))) |
| 41 | 38, 39, 20, 40 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → ((𝑀 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁))) |
| 42 | 37, 41 | mpbird 247 |
. . 3
⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
| 43 | 18 | nnred 11035 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 44 | | nnleltp1 11432 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) |
| 45 | 18, 4, 44 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) |
| 46 | 1, 45 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → 𝐾 < (𝑀 + 1)) |
| 47 | 43, 46 | ltned 10173 |
. . . . 5
⊢ (𝜑 → 𝐾 ≠ (𝑀 + 1)) |
| 48 | 47 | necomd 2849 |
. . . 4
⊢ (𝜑 → (𝑀 + 1) ≠ 𝐾) |
| 49 | | nelsn 4212 |
. . . 4
⊢ ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾}) |
| 50 | 48, 49 | syl 17 |
. . 3
⊢ (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾}) |
| 51 | 42, 50 | eldifd 3585 |
. 2
⊢ (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})) |
| 52 | 23, 51 | jca 554 |
1
⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |