![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrpnf | Structured version Visualization version GIF version |
Description: The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
supxrpnf | ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3597 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ*)) | |
2 | pnfnlt 11962 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
3 | 1, 2 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → (𝑦 ∈ 𝐴 → ¬ +∞ < 𝑦)) |
4 | 3 | ralrimiv 2965 | . . 3 ⊢ (𝐴 ⊆ ℝ* → ∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦) |
5 | breq2 4657 | . . . . . 6 ⊢ (𝑧 = +∞ → (𝑦 < 𝑧 ↔ 𝑦 < +∞)) | |
6 | 5 | rspcev 3309 | . . . . 5 ⊢ ((+∞ ∈ 𝐴 ∧ 𝑦 < +∞) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) |
7 | 6 | ex 450 | . . . 4 ⊢ (+∞ ∈ 𝐴 → (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
8 | 7 | ralrimivw 2967 | . . 3 ⊢ (+∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
9 | 4, 8 | anim12i 590 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
10 | pnfxr 10092 | . . 3 ⊢ +∞ ∈ ℝ* | |
11 | supxr 12143 | . . 3 ⊢ (((𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) → sup(𝐴, ℝ*, < ) = +∞) | |
12 | 10, 11 | mpanl2 717 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ (∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) → sup(𝐴, ℝ*, < ) = +∞) |
13 | 9, 12 | syldan 487 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 class class class wbr 4653 supcsup 8346 ℝcr 9935 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 |
This theorem is referenced by: xrsup 12667 volsup 23324 supxrge 39554 supminfxr2 39699 sge0tsms 40597 sge0sup 40608 |
Copyright terms: Public domain | W3C validator |