| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2623 |
. . 3
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ =
+∞) |
| 2 | | sge0sup.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 3 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋 ∈ 𝑉) |
| 4 | | sge0sup.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| 5 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞)) |
| 6 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran
𝐹) |
| 7 | 3, 5, 6 | sge0pnfval 40590 |
. . 3
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) →
(Σ^‘𝐹) = +∞) |
| 8 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 9 | 8 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ V) |
| 10 | 4 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
| 11 | | elinel1 3799 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋) |
| 12 | | elpwi 4168 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ⊆ 𝑋) |
| 14 | 13 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ⊆ 𝑋) |
| 15 | 10, 14 | fssresd 6071 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥⟶(0[,]+∞)) |
| 16 | 9, 15 | sge0xrcl 40602 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐹 ↾ 𝑥)) ∈
ℝ*) |
| 17 | 16 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐹 ↾ 𝑥)) ∈
ℝ*) |
| 18 | 17 | ralrimiva 2966 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩
Fin)(Σ^‘(𝐹 ↾ 𝑥)) ∈
ℝ*) |
| 19 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) |
| 20 | 19 | rnmptss 6392 |
. . . . 5
⊢
(∀𝑥 ∈
(𝒫 𝑋 ∩
Fin)(Σ^‘(𝐹 ↾ 𝑥)) ∈ ℝ* → ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ⊆
ℝ*) |
| 21 | 18, 20 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ⊆
ℝ*) |
| 22 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝐹:𝑋⟶(0[,]+∞) → 𝐹 Fn 𝑋) |
| 23 | 4, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 24 | | fvelrnb 6243 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑋 (𝐹‘𝑦) = +∞)) |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑋 (𝐹‘𝑦) = +∞)) |
| 26 | 25 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran
𝐹 ↔ ∃𝑦 ∈ 𝑋 (𝐹‘𝑦) = +∞)) |
| 27 | 6, 26 | mpbid 222 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑦 ∈ 𝑋 (𝐹‘𝑦) = +∞) |
| 28 | | snelpwi 4912 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑋 → {𝑦} ∈ 𝒫 𝑋) |
| 29 | | snfi 8038 |
. . . . . . . . . . . . 13
⊢ {𝑦} ∈ Fin |
| 30 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑋 → {𝑦} ∈ Fin) |
| 31 | 28, 30 | elind 3798 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑋 → {𝑦} ∈ (𝒫 𝑋 ∩ Fin)) |
| 32 | 31 | 3ad2ant2 1083 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → {𝑦} ∈ (𝒫 𝑋 ∩ Fin)) |
| 33 | | simp2 1062 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → 𝑦 ∈ 𝑋) |
| 34 | 4 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → 𝐹:𝑋⟶(0[,]+∞)) |
| 35 | 33 | snssd 4340 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → {𝑦} ⊆ 𝑋) |
| 36 | 34, 35 | fssresd 6071 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → (𝐹 ↾ {𝑦}):{𝑦}⟶(0[,]+∞)) |
| 37 | 33, 36 | sge0sn 40596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) →
(Σ^‘(𝐹 ↾ {𝑦})) = ((𝐹 ↾ {𝑦})‘𝑦)) |
| 38 | | vsnid 4209 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ {𝑦} |
| 39 | | fvres 6207 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑦} → ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹‘𝑦)) |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹‘𝑦) |
| 41 | 40 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹‘𝑦)) |
| 42 | | simp3 1063 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → (𝐹‘𝑦) = +∞) |
| 43 | 37, 41, 42 | 3eqtrrd 2661 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → +∞ =
(Σ^‘(𝐹 ↾ {𝑦}))) |
| 44 | | reseq2 5391 |
. . . . . . . . . . . . 13
⊢ (𝑥 = {𝑦} → (𝐹 ↾ 𝑥) = (𝐹 ↾ {𝑦})) |
| 45 | 44 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑥 = {𝑦} →
(Σ^‘(𝐹 ↾ 𝑥)) =
(Σ^‘(𝐹 ↾ {𝑦}))) |
| 46 | 45 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝑦} → (+∞ =
(Σ^‘(𝐹 ↾ 𝑥)) ↔ +∞ =
(Σ^‘(𝐹 ↾ {𝑦})))) |
| 47 | 46 | rspcev 3309 |
. . . . . . . . . 10
⊢ (({𝑦} ∈ (𝒫 𝑋 ∩ Fin) ∧ +∞ =
(Σ^‘(𝐹 ↾ {𝑦}))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ =
(Σ^‘(𝐹 ↾ 𝑥))) |
| 48 | 32, 43, 47 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ =
(Σ^‘(𝐹 ↾ 𝑥))) |
| 49 | | pnfex 10093 |
. . . . . . . . . 10
⊢ +∞
∈ V |
| 50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → +∞ ∈
V) |
| 51 | 19, 48, 50 | elrnmptd 39366 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑦) = +∞) → +∞ ∈ ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))) |
| 52 | 51 | 3exp 1264 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝑋 → ((𝐹‘𝑦) = +∞ → +∞ ∈ ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))))) |
| 53 | 52 | rexlimdv 3030 |
. . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ 𝑋 (𝐹‘𝑦) = +∞ → +∞ ∈ ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))))) |
| 54 | 53 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑦 ∈ 𝑋 (𝐹‘𝑦) = +∞ → +∞ ∈ ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))))) |
| 55 | 27, 54 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))) |
| 56 | | supxrpnf 12148 |
. . . 4
⊢ ((ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ⊆ ℝ* ∧
+∞ ∈ ran (𝑥
∈ (𝒫 𝑋 ∩
Fin) ↦ (Σ^‘(𝐹 ↾ 𝑥)))) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, < ) =
+∞) |
| 57 | 21, 55, 56 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, < ) =
+∞) |
| 58 | 1, 7, 57 | 3eqtr4d 2666 |
. 2
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) →
(Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, <
)) |
| 59 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → 𝑋 ∈ 𝑉) |
| 60 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → 𝐹:𝑋⟶(0[,]+∞)) |
| 61 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → ¬ +∞
∈ ran 𝐹) |
| 62 | 60, 61 | fge0iccico 40587 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → 𝐹:𝑋⟶(0[,)+∞)) |
| 63 | 59, 62 | sge0reval 40589 |
. . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) →
(Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
| 64 | | elinel2 3800 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin) |
| 65 | 64 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin) |
| 66 | 15 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥⟶(0[,]+∞)) |
| 67 | | nelrnres 39374 |
. . . . . . . . . 10
⊢ (¬
+∞ ∈ ran 𝐹
→ ¬ +∞ ∈ ran (𝐹 ↾ 𝑥)) |
| 68 | 67 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ¬ +∞ ∈
ran (𝐹 ↾ 𝑥)) |
| 69 | 66, 68 | fge0iccico 40587 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥⟶(0[,)+∞)) |
| 70 | 65, 69 | sge0fsum 40604 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐹 ↾ 𝑥)) = Σ𝑦 ∈ 𝑥 ((𝐹 ↾ 𝑥)‘𝑦)) |
| 71 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
| 72 | | fvres 6207 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑥 → ((𝐹 ↾ 𝑥)‘𝑦) = (𝐹‘𝑦)) |
| 73 | 71, 72 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → ((𝐹 ↾ 𝑥)‘𝑦) = (𝐹‘𝑦)) |
| 74 | 73 | sumeq2dv 14433 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦 ∈ 𝑥 ((𝐹 ↾ 𝑥)‘𝑦) = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
| 75 | 74 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦 ∈ 𝑥 ((𝐹 ↾ 𝑥)‘𝑦) = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
| 76 | 70, 75 | eqtrd 2656 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐹 ↾ 𝑥)) = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
| 77 | 76 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
| 78 | 77 | rneqd 5353 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) = ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
| 79 | 78 | supeq1d 8352 |
. . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, < ) = sup(ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
| 80 | 63, 79 | eqtr4d 2659 |
. 2
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) →
(Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, <
)) |
| 81 | 58, 80 | pm2.61dan 832 |
1
⊢ (𝜑 →
(Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, <
)) |