Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xaddeq0 Structured version   Visualization version   GIF version

Theorem xaddeq0 29518
Description: Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.)
Assertion
Ref Expression
xaddeq0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵))

Proof of Theorem xaddeq0
StepHypRef Expression
1 elxr 11950 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 simpll 790 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 ∈ ℝ)
32rexrd 10089 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 ∈ ℝ*)
4 xnegneg 12045 . . . . . . 7 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
53, 4syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒-𝑒𝐴 = 𝐴)
63xnegcld 12130 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐴 ∈ ℝ*)
7 xaddid2 12073 . . . . . . . . 9 (-𝑒𝐴 ∈ ℝ* → (0 +𝑒 -𝑒𝐴) = -𝑒𝐴)
86, 7syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (0 +𝑒 -𝑒𝐴) = -𝑒𝐴)
9 simplr 792 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
10 xaddcom 12071 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
113, 9, 10syl2anc 693 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
1211oveq1d 6665 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐴) = ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴))
13 simpr 477 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
1413oveq1d 6665 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐴) = (0 +𝑒 -𝑒𝐴))
15 xpncan 12081 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1615ancoms 469 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1716adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1812, 14, 173eqtr3d 2664 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (0 +𝑒 -𝑒𝐴) = 𝐵)
198, 18eqtr3d 2658 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐴 = 𝐵)
20 xnegeq 12038 . . . . . . 7 (-𝑒𝐴 = 𝐵 → -𝑒-𝑒𝐴 = -𝑒𝐵)
2119, 20syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒-𝑒𝐴 = -𝑒𝐵)
225, 21eqtr3d 2658 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
2322ex 450 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
24 simpll 790 . . . . . 6 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = +∞)
25 simplr 792 . . . . . . . . . 10 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
2624oveq1d 6665 . . . . . . . . . . . . 13 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
27 simpr 477 . . . . . . . . . . . . 13 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
2826, 27eqtr3d 2658 . . . . . . . . . . . 12 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (+∞ +𝑒 𝐵) = 0)
29 0re 10040 . . . . . . . . . . . . 13 0 ∈ ℝ
30 renepnf 10087 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ +∞)
3129, 30mp1i 13 . . . . . . . . . . . 12 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 0 ≠ +∞)
3228, 31eqnetrd 2861 . . . . . . . . . . 11 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (+∞ +𝑒 𝐵) ≠ +∞)
3332neneqd 2799 . . . . . . . . . 10 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ (+∞ +𝑒 𝐵) = +∞)
34 xaddpnf2 12058 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
3534stoic1a 1697 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ ¬ (+∞ +𝑒 𝐵) = +∞) → ¬ 𝐵 ≠ -∞)
3625, 33, 35syl2anc 693 . . . . . . . . 9 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ 𝐵 ≠ -∞)
37 nne 2798 . . . . . . . . 9 𝐵 ≠ -∞ ↔ 𝐵 = -∞)
3836, 37sylib 208 . . . . . . . 8 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 = -∞)
39 xnegeq 12038 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
4038, 39syl 17 . . . . . . 7 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐵 = -𝑒-∞)
41 xnegmnf 12041 . . . . . . 7 -𝑒-∞ = +∞
4240, 41syl6req 2673 . . . . . 6 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → +∞ = -𝑒𝐵)
4324, 42eqtrd 2656 . . . . 5 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
4443ex 450 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
45 simpll 790 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -∞)
46 simplr 792 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
4745oveq1d 6665 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
48 simpr 477 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
4947, 48eqtr3d 2658 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (-∞ +𝑒 𝐵) = 0)
50 renemnf 10088 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ -∞)
5129, 50mp1i 13 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 0 ≠ -∞)
5249, 51eqnetrd 2861 . . . . . . . . . . 11 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (-∞ +𝑒 𝐵) ≠ -∞)
5352neneqd 2799 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ (-∞ +𝑒 𝐵) = -∞)
54 xaddmnf2 12060 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
5554stoic1a 1697 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ ¬ (-∞ +𝑒 𝐵) = -∞) → ¬ 𝐵 ≠ +∞)
5646, 53, 55syl2anc 693 . . . . . . . . 9 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ 𝐵 ≠ +∞)
57 nne 2798 . . . . . . . . 9 𝐵 ≠ +∞ ↔ 𝐵 = +∞)
5856, 57sylib 208 . . . . . . . 8 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 = +∞)
59 xnegeq 12038 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
6058, 59syl 17 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐵 = -𝑒+∞)
61 xnegpnf 12040 . . . . . . 7 -𝑒+∞ = -∞
6260, 61syl6req 2673 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -∞ = -𝑒𝐵)
6345, 62eqtrd 2656 . . . . 5 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
6463ex 450 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
6523, 44, 643jaoian 1393 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
661, 65sylanb 489 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
67 simpr 477 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → 𝐴 = -𝑒𝐵)
6867oveq1d 6665 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐴 +𝑒 𝐵) = (-𝑒𝐵 +𝑒 𝐵))
69 xnegcl 12044 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
7069ad2antlr 763 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → -𝑒𝐵 ∈ ℝ*)
71 simplr 792 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → 𝐵 ∈ ℝ*)
72 xaddcom 12071 . . . . 5 ((-𝑒𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
7370, 71, 72syl2anc 693 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
74 xnegid 12069 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 +𝑒 -𝑒𝐵) = 0)
7574ad2antlr 763 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐵 +𝑒 -𝑒𝐵) = 0)
7668, 73, 753eqtrd 2660 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐴 +𝑒 𝐵) = 0)
7776ex 450 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = -𝑒𝐵 → (𝐴 +𝑒 𝐵) = 0))
7866, 77impbid 202 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036   = wceq 1483  wcel 1990  wne 2794  (class class class)co 6650  cr 9935  0cc0 9936  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073  -𝑒cxne 11943   +𝑒 cxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-sub 10268  df-neg 10269  df-xneg 11946  df-xadd 11947
This theorem is referenced by:  xrsinvgval  29677
  Copyright terms: Public domain W3C validator