LLVM API Documentation
00001 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains the X86 implementation of the TargetInstrInfo class. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "X86InstrInfo.h" 00015 #include "X86.h" 00016 #include "X86InstrBuilder.h" 00017 #include "X86MachineFunctionInfo.h" 00018 #include "X86Subtarget.h" 00019 #include "X86TargetMachine.h" 00020 #include "llvm/ADT/STLExtras.h" 00021 #include "llvm/CodeGen/LiveVariables.h" 00022 #include "llvm/CodeGen/MachineConstantPool.h" 00023 #include "llvm/CodeGen/MachineDominators.h" 00024 #include "llvm/CodeGen/MachineFrameInfo.h" 00025 #include "llvm/CodeGen/MachineInstrBuilder.h" 00026 #include "llvm/CodeGen/MachineRegisterInfo.h" 00027 #include "llvm/CodeGen/StackMaps.h" 00028 #include "llvm/IR/DerivedTypes.h" 00029 #include "llvm/IR/Function.h" 00030 #include "llvm/IR/LLVMContext.h" 00031 #include "llvm/MC/MCAsmInfo.h" 00032 #include "llvm/MC/MCExpr.h" 00033 #include "llvm/MC/MCInst.h" 00034 #include "llvm/Support/CommandLine.h" 00035 #include "llvm/Support/Debug.h" 00036 #include "llvm/Support/ErrorHandling.h" 00037 #include "llvm/Support/raw_ostream.h" 00038 #include "llvm/Target/TargetOptions.h" 00039 #include <limits> 00040 00041 using namespace llvm; 00042 00043 #define DEBUG_TYPE "x86-instr-info" 00044 00045 #define GET_INSTRINFO_CTOR_DTOR 00046 #include "X86GenInstrInfo.inc" 00047 00048 static cl::opt<bool> 00049 NoFusing("disable-spill-fusing", 00050 cl::desc("Disable fusing of spill code into instructions")); 00051 static cl::opt<bool> 00052 PrintFailedFusing("print-failed-fuse-candidates", 00053 cl::desc("Print instructions that the allocator wants to" 00054 " fuse, but the X86 backend currently can't"), 00055 cl::Hidden); 00056 static cl::opt<bool> 00057 ReMatPICStubLoad("remat-pic-stub-load", 00058 cl::desc("Re-materialize load from stub in PIC mode"), 00059 cl::init(false), cl::Hidden); 00060 00061 enum { 00062 // Select which memory operand is being unfolded. 00063 // (stored in bits 0 - 3) 00064 TB_INDEX_0 = 0, 00065 TB_INDEX_1 = 1, 00066 TB_INDEX_2 = 2, 00067 TB_INDEX_3 = 3, 00068 TB_INDEX_MASK = 0xf, 00069 00070 // Do not insert the reverse map (MemOp -> RegOp) into the table. 00071 // This may be needed because there is a many -> one mapping. 00072 TB_NO_REVERSE = 1 << 4, 00073 00074 // Do not insert the forward map (RegOp -> MemOp) into the table. 00075 // This is needed for Native Client, which prohibits branch 00076 // instructions from using a memory operand. 00077 TB_NO_FORWARD = 1 << 5, 00078 00079 TB_FOLDED_LOAD = 1 << 6, 00080 TB_FOLDED_STORE = 1 << 7, 00081 00082 // Minimum alignment required for load/store. 00083 // Used for RegOp->MemOp conversion. 00084 // (stored in bits 8 - 15) 00085 TB_ALIGN_SHIFT = 8, 00086 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT, 00087 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT, 00088 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT, 00089 TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT, 00090 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT 00091 }; 00092 00093 struct X86OpTblEntry { 00094 uint16_t RegOp; 00095 uint16_t MemOp; 00096 uint16_t Flags; 00097 }; 00098 00099 // Pin the vtable to this file. 00100 void X86InstrInfo::anchor() {} 00101 00102 X86InstrInfo::X86InstrInfo(X86Subtarget &STI) 00103 : X86GenInstrInfo( 00104 (STI.is64Bit() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32), 00105 (STI.is64Bit() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)), 00106 Subtarget(STI), RI(STI) { 00107 00108 static const X86OpTblEntry OpTbl2Addr[] = { 00109 { X86::ADC32ri, X86::ADC32mi, 0 }, 00110 { X86::ADC32ri8, X86::ADC32mi8, 0 }, 00111 { X86::ADC32rr, X86::ADC32mr, 0 }, 00112 { X86::ADC64ri32, X86::ADC64mi32, 0 }, 00113 { X86::ADC64ri8, X86::ADC64mi8, 0 }, 00114 { X86::ADC64rr, X86::ADC64mr, 0 }, 00115 { X86::ADD16ri, X86::ADD16mi, 0 }, 00116 { X86::ADD16ri8, X86::ADD16mi8, 0 }, 00117 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE }, 00118 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE }, 00119 { X86::ADD16rr, X86::ADD16mr, 0 }, 00120 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE }, 00121 { X86::ADD32ri, X86::ADD32mi, 0 }, 00122 { X86::ADD32ri8, X86::ADD32mi8, 0 }, 00123 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE }, 00124 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE }, 00125 { X86::ADD32rr, X86::ADD32mr, 0 }, 00126 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE }, 00127 { X86::ADD64ri32, X86::ADD64mi32, 0 }, 00128 { X86::ADD64ri8, X86::ADD64mi8, 0 }, 00129 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE }, 00130 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE }, 00131 { X86::ADD64rr, X86::ADD64mr, 0 }, 00132 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE }, 00133 { X86::ADD8ri, X86::ADD8mi, 0 }, 00134 { X86::ADD8rr, X86::ADD8mr, 0 }, 00135 { X86::AND16ri, X86::AND16mi, 0 }, 00136 { X86::AND16ri8, X86::AND16mi8, 0 }, 00137 { X86::AND16rr, X86::AND16mr, 0 }, 00138 { X86::AND32ri, X86::AND32mi, 0 }, 00139 { X86::AND32ri8, X86::AND32mi8, 0 }, 00140 { X86::AND32rr, X86::AND32mr, 0 }, 00141 { X86::AND64ri32, X86::AND64mi32, 0 }, 00142 { X86::AND64ri8, X86::AND64mi8, 0 }, 00143 { X86::AND64rr, X86::AND64mr, 0 }, 00144 { X86::AND8ri, X86::AND8mi, 0 }, 00145 { X86::AND8rr, X86::AND8mr, 0 }, 00146 { X86::DEC16r, X86::DEC16m, 0 }, 00147 { X86::DEC32r, X86::DEC32m, 0 }, 00148 { X86::DEC64_16r, X86::DEC64_16m, 0 }, 00149 { X86::DEC64_32r, X86::DEC64_32m, 0 }, 00150 { X86::DEC64r, X86::DEC64m, 0 }, 00151 { X86::DEC8r, X86::DEC8m, 0 }, 00152 { X86::INC16r, X86::INC16m, 0 }, 00153 { X86::INC32r, X86::INC32m, 0 }, 00154 { X86::INC64_16r, X86::INC64_16m, 0 }, 00155 { X86::INC64_32r, X86::INC64_32m, 0 }, 00156 { X86::INC64r, X86::INC64m, 0 }, 00157 { X86::INC8r, X86::INC8m, 0 }, 00158 { X86::NEG16r, X86::NEG16m, 0 }, 00159 { X86::NEG32r, X86::NEG32m, 0 }, 00160 { X86::NEG64r, X86::NEG64m, 0 }, 00161 { X86::NEG8r, X86::NEG8m, 0 }, 00162 { X86::NOT16r, X86::NOT16m, 0 }, 00163 { X86::NOT32r, X86::NOT32m, 0 }, 00164 { X86::NOT64r, X86::NOT64m, 0 }, 00165 { X86::NOT8r, X86::NOT8m, 0 }, 00166 { X86::OR16ri, X86::OR16mi, 0 }, 00167 { X86::OR16ri8, X86::OR16mi8, 0 }, 00168 { X86::OR16rr, X86::OR16mr, 0 }, 00169 { X86::OR32ri, X86::OR32mi, 0 }, 00170 { X86::OR32ri8, X86::OR32mi8, 0 }, 00171 { X86::OR32rr, X86::OR32mr, 0 }, 00172 { X86::OR64ri32, X86::OR64mi32, 0 }, 00173 { X86::OR64ri8, X86::OR64mi8, 0 }, 00174 { X86::OR64rr, X86::OR64mr, 0 }, 00175 { X86::OR8ri, X86::OR8mi, 0 }, 00176 { X86::OR8rr, X86::OR8mr, 0 }, 00177 { X86::ROL16r1, X86::ROL16m1, 0 }, 00178 { X86::ROL16rCL, X86::ROL16mCL, 0 }, 00179 { X86::ROL16ri, X86::ROL16mi, 0 }, 00180 { X86::ROL32r1, X86::ROL32m1, 0 }, 00181 { X86::ROL32rCL, X86::ROL32mCL, 0 }, 00182 { X86::ROL32ri, X86::ROL32mi, 0 }, 00183 { X86::ROL64r1, X86::ROL64m1, 0 }, 00184 { X86::ROL64rCL, X86::ROL64mCL, 0 }, 00185 { X86::ROL64ri, X86::ROL64mi, 0 }, 00186 { X86::ROL8r1, X86::ROL8m1, 0 }, 00187 { X86::ROL8rCL, X86::ROL8mCL, 0 }, 00188 { X86::ROL8ri, X86::ROL8mi, 0 }, 00189 { X86::ROR16r1, X86::ROR16m1, 0 }, 00190 { X86::ROR16rCL, X86::ROR16mCL, 0 }, 00191 { X86::ROR16ri, X86::ROR16mi, 0 }, 00192 { X86::ROR32r1, X86::ROR32m1, 0 }, 00193 { X86::ROR32rCL, X86::ROR32mCL, 0 }, 00194 { X86::ROR32ri, X86::ROR32mi, 0 }, 00195 { X86::ROR64r1, X86::ROR64m1, 0 }, 00196 { X86::ROR64rCL, X86::ROR64mCL, 0 }, 00197 { X86::ROR64ri, X86::ROR64mi, 0 }, 00198 { X86::ROR8r1, X86::ROR8m1, 0 }, 00199 { X86::ROR8rCL, X86::ROR8mCL, 0 }, 00200 { X86::ROR8ri, X86::ROR8mi, 0 }, 00201 { X86::SAR16r1, X86::SAR16m1, 0 }, 00202 { X86::SAR16rCL, X86::SAR16mCL, 0 }, 00203 { X86::SAR16ri, X86::SAR16mi, 0 }, 00204 { X86::SAR32r1, X86::SAR32m1, 0 }, 00205 { X86::SAR32rCL, X86::SAR32mCL, 0 }, 00206 { X86::SAR32ri, X86::SAR32mi, 0 }, 00207 { X86::SAR64r1, X86::SAR64m1, 0 }, 00208 { X86::SAR64rCL, X86::SAR64mCL, 0 }, 00209 { X86::SAR64ri, X86::SAR64mi, 0 }, 00210 { X86::SAR8r1, X86::SAR8m1, 0 }, 00211 { X86::SAR8rCL, X86::SAR8mCL, 0 }, 00212 { X86::SAR8ri, X86::SAR8mi, 0 }, 00213 { X86::SBB32ri, X86::SBB32mi, 0 }, 00214 { X86::SBB32ri8, X86::SBB32mi8, 0 }, 00215 { X86::SBB32rr, X86::SBB32mr, 0 }, 00216 { X86::SBB64ri32, X86::SBB64mi32, 0 }, 00217 { X86::SBB64ri8, X86::SBB64mi8, 0 }, 00218 { X86::SBB64rr, X86::SBB64mr, 0 }, 00219 { X86::SHL16rCL, X86::SHL16mCL, 0 }, 00220 { X86::SHL16ri, X86::SHL16mi, 0 }, 00221 { X86::SHL32rCL, X86::SHL32mCL, 0 }, 00222 { X86::SHL32ri, X86::SHL32mi, 0 }, 00223 { X86::SHL64rCL, X86::SHL64mCL, 0 }, 00224 { X86::SHL64ri, X86::SHL64mi, 0 }, 00225 { X86::SHL8rCL, X86::SHL8mCL, 0 }, 00226 { X86::SHL8ri, X86::SHL8mi, 0 }, 00227 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 }, 00228 { X86::SHLD16rri8, X86::SHLD16mri8, 0 }, 00229 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 }, 00230 { X86::SHLD32rri8, X86::SHLD32mri8, 0 }, 00231 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 }, 00232 { X86::SHLD64rri8, X86::SHLD64mri8, 0 }, 00233 { X86::SHR16r1, X86::SHR16m1, 0 }, 00234 { X86::SHR16rCL, X86::SHR16mCL, 0 }, 00235 { X86::SHR16ri, X86::SHR16mi, 0 }, 00236 { X86::SHR32r1, X86::SHR32m1, 0 }, 00237 { X86::SHR32rCL, X86::SHR32mCL, 0 }, 00238 { X86::SHR32ri, X86::SHR32mi, 0 }, 00239 { X86::SHR64r1, X86::SHR64m1, 0 }, 00240 { X86::SHR64rCL, X86::SHR64mCL, 0 }, 00241 { X86::SHR64ri, X86::SHR64mi, 0 }, 00242 { X86::SHR8r1, X86::SHR8m1, 0 }, 00243 { X86::SHR8rCL, X86::SHR8mCL, 0 }, 00244 { X86::SHR8ri, X86::SHR8mi, 0 }, 00245 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 }, 00246 { X86::SHRD16rri8, X86::SHRD16mri8, 0 }, 00247 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 }, 00248 { X86::SHRD32rri8, X86::SHRD32mri8, 0 }, 00249 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 }, 00250 { X86::SHRD64rri8, X86::SHRD64mri8, 0 }, 00251 { X86::SUB16ri, X86::SUB16mi, 0 }, 00252 { X86::SUB16ri8, X86::SUB16mi8, 0 }, 00253 { X86::SUB16rr, X86::SUB16mr, 0 }, 00254 { X86::SUB32ri, X86::SUB32mi, 0 }, 00255 { X86::SUB32ri8, X86::SUB32mi8, 0 }, 00256 { X86::SUB32rr, X86::SUB32mr, 0 }, 00257 { X86::SUB64ri32, X86::SUB64mi32, 0 }, 00258 { X86::SUB64ri8, X86::SUB64mi8, 0 }, 00259 { X86::SUB64rr, X86::SUB64mr, 0 }, 00260 { X86::SUB8ri, X86::SUB8mi, 0 }, 00261 { X86::SUB8rr, X86::SUB8mr, 0 }, 00262 { X86::XOR16ri, X86::XOR16mi, 0 }, 00263 { X86::XOR16ri8, X86::XOR16mi8, 0 }, 00264 { X86::XOR16rr, X86::XOR16mr, 0 }, 00265 { X86::XOR32ri, X86::XOR32mi, 0 }, 00266 { X86::XOR32ri8, X86::XOR32mi8, 0 }, 00267 { X86::XOR32rr, X86::XOR32mr, 0 }, 00268 { X86::XOR64ri32, X86::XOR64mi32, 0 }, 00269 { X86::XOR64ri8, X86::XOR64mi8, 0 }, 00270 { X86::XOR64rr, X86::XOR64mr, 0 }, 00271 { X86::XOR8ri, X86::XOR8mi, 0 }, 00272 { X86::XOR8rr, X86::XOR8mr, 0 } 00273 }; 00274 00275 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { 00276 unsigned RegOp = OpTbl2Addr[i].RegOp; 00277 unsigned MemOp = OpTbl2Addr[i].MemOp; 00278 unsigned Flags = OpTbl2Addr[i].Flags; 00279 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, 00280 RegOp, MemOp, 00281 // Index 0, folded load and store, no alignment requirement. 00282 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); 00283 } 00284 00285 static const X86OpTblEntry OpTbl0[] = { 00286 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD }, 00287 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD }, 00288 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD }, 00289 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD }, 00290 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD }, 00291 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD }, 00292 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD }, 00293 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD }, 00294 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD }, 00295 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD }, 00296 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD }, 00297 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD }, 00298 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD }, 00299 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD }, 00300 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD }, 00301 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD }, 00302 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD }, 00303 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD }, 00304 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD }, 00305 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD }, 00306 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE }, 00307 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD }, 00308 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD }, 00309 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD }, 00310 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD }, 00311 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD }, 00312 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD }, 00313 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD }, 00314 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD }, 00315 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD }, 00316 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD }, 00317 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE }, 00318 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE }, 00319 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE }, 00320 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE }, 00321 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE }, 00322 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE }, 00323 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE }, 00324 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE }, 00325 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, 00326 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 00327 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 00328 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 00329 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE }, 00330 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE }, 00331 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE }, 00332 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE }, 00333 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE }, 00334 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE }, 00335 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD }, 00336 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD }, 00337 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD }, 00338 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD }, 00339 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE }, 00340 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE }, 00341 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE }, 00342 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE }, 00343 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE }, 00344 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE }, 00345 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE }, 00346 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE }, 00347 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE }, 00348 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE }, 00349 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE }, 00350 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE }, 00351 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE }, 00352 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE }, 00353 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE }, 00354 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE }, 00355 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD }, 00356 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD }, 00357 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD }, 00358 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD }, 00359 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, 00360 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, 00361 // AVX 128-bit versions of foldable instructions 00362 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE }, 00363 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 00364 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 00365 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 00366 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 00367 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE }, 00368 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, 00369 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE }, 00370 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE }, 00371 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE }, 00372 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE }, 00373 // AVX 256-bit foldable instructions 00374 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 00375 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 00376 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 00377 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 00378 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE }, 00379 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }, 00380 // AVX-512 foldable instructions 00381 { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }, 00382 { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 }, 00383 { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 }, 00384 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 }, 00385 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 }, 00386 { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE }, 00387 { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE }, 00388 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE }, 00389 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE } 00390 }; 00391 00392 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { 00393 unsigned RegOp = OpTbl0[i].RegOp; 00394 unsigned MemOp = OpTbl0[i].MemOp; 00395 unsigned Flags = OpTbl0[i].Flags; 00396 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, 00397 RegOp, MemOp, TB_INDEX_0 | Flags); 00398 } 00399 00400 static const X86OpTblEntry OpTbl1[] = { 00401 { X86::CMP16rr, X86::CMP16rm, 0 }, 00402 { X86::CMP32rr, X86::CMP32rm, 0 }, 00403 { X86::CMP64rr, X86::CMP64rm, 0 }, 00404 { X86::CMP8rr, X86::CMP8rm, 0 }, 00405 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, 00406 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, 00407 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, 00408 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, 00409 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, 00410 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, 00411 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, 00412 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, 00413 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, 00414 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, 00415 { X86::IMUL16rri, X86::IMUL16rmi, 0 }, 00416 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, 00417 { X86::IMUL32rri, X86::IMUL32rmi, 0 }, 00418 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, 00419 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, 00420 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, 00421 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, 00422 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, 00423 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, 00424 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, 00425 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 }, 00426 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 }, 00427 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 }, 00428 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 }, 00429 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, 00430 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, 00431 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, 00432 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, 00433 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, 00434 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, 00435 { X86::MOV16rr, X86::MOV16rm, 0 }, 00436 { X86::MOV32rr, X86::MOV32rm, 0 }, 00437 { X86::MOV64rr, X86::MOV64rm, 0 }, 00438 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, 00439 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, 00440 { X86::MOV8rr, X86::MOV8rm, 0 }, 00441 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 }, 00442 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 }, 00443 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, 00444 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, 00445 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, 00446 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 }, 00447 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 }, 00448 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 }, 00449 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, 00450 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, 00451 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, 00452 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, 00453 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, 00454 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, 00455 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 }, 00456 { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, 00457 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 }, 00458 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 }, 00459 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, 00460 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, 00461 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, 00462 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, 00463 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 }, 00464 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 }, 00465 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 }, 00466 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 }, 00467 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 }, 00468 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 }, 00469 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 }, 00470 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 }, 00471 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 }, 00472 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 }, 00473 { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, 00474 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, 00475 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, 00476 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 }, 00477 { X86::SQRTSDr, X86::SQRTSDm, 0 }, 00478 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, 00479 { X86::SQRTSSr, X86::SQRTSSm, 0 }, 00480 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, 00481 { X86::TEST16rr, X86::TEST16rm, 0 }, 00482 { X86::TEST32rr, X86::TEST32rm, 0 }, 00483 { X86::TEST64rr, X86::TEST64rm, 0 }, 00484 { X86::TEST8rr, X86::TEST8rm, 0 }, 00485 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 00486 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, 00487 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, 00488 // AVX 128-bit versions of foldable instructions 00489 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 }, 00490 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 }, 00491 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 }, 00492 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 }, 00493 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 }, 00494 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 }, 00495 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 }, 00496 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 }, 00497 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 }, 00498 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 }, 00499 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 }, 00500 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 }, 00501 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 }, 00502 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 }, 00503 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 }, 00504 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 }, 00505 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 }, 00506 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 }, 00507 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 }, 00508 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 }, 00509 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 }, 00510 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 }, 00511 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 }, 00512 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 }, 00513 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 }, 00514 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 }, 00515 { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 }, 00516 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 }, 00517 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 }, 00518 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 }, 00519 { X86::VPABSBrr128, X86::VPABSBrm128, 0 }, 00520 { X86::VPABSDrr128, X86::VPABSDrm128, 0 }, 00521 { X86::VPABSWrr128, X86::VPABSWrm128, 0 }, 00522 { X86::VPERMILPDri, X86::VPERMILPDmi, 0 }, 00523 { X86::VPERMILPSri, X86::VPERMILPSmi, 0 }, 00524 { X86::VPSHUFDri, X86::VPSHUFDmi, 0 }, 00525 { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 }, 00526 { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 }, 00527 { X86::VRCPPSr, X86::VRCPPSm, 0 }, 00528 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 }, 00529 { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 }, 00530 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 }, 00531 { X86::VSQRTPDr, X86::VSQRTPDm, 0 }, 00532 { X86::VSQRTPSr, X86::VSQRTPSm, 0 }, 00533 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, 00534 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }, 00535 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE }, 00536 00537 // AVX 256-bit foldable instructions 00538 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 }, 00539 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 }, 00540 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 }, 00541 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, 00542 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, 00543 { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 }, 00544 { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 }, 00545 00546 // AVX2 foldable instructions 00547 { X86::VPABSBrr256, X86::VPABSBrm256, 0 }, 00548 { X86::VPABSDrr256, X86::VPABSDrm256, 0 }, 00549 { X86::VPABSWrr256, X86::VPABSWrm256, 0 }, 00550 { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 }, 00551 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 }, 00552 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 }, 00553 { X86::VRCPPSYr, X86::VRCPPSYm, 0 }, 00554 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 }, 00555 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 }, 00556 { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 }, 00557 { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 }, 00558 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE }, 00559 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE }, 00560 00561 // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions 00562 { X86::BEXTR32rr, X86::BEXTR32rm, 0 }, 00563 { X86::BEXTR64rr, X86::BEXTR64rm, 0 }, 00564 { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 }, 00565 { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 }, 00566 { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 }, 00567 { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 }, 00568 { X86::BLCI32rr, X86::BLCI32rm, 0 }, 00569 { X86::BLCI64rr, X86::BLCI64rm, 0 }, 00570 { X86::BLCIC32rr, X86::BLCIC32rm, 0 }, 00571 { X86::BLCIC64rr, X86::BLCIC64rm, 0 }, 00572 { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 }, 00573 { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 }, 00574 { X86::BLCS32rr, X86::BLCS32rm, 0 }, 00575 { X86::BLCS64rr, X86::BLCS64rm, 0 }, 00576 { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 }, 00577 { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 }, 00578 { X86::BLSI32rr, X86::BLSI32rm, 0 }, 00579 { X86::BLSI64rr, X86::BLSI64rm, 0 }, 00580 { X86::BLSIC32rr, X86::BLSIC32rm, 0 }, 00581 { X86::BLSIC64rr, X86::BLSIC64rm, 0 }, 00582 { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 }, 00583 { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 }, 00584 { X86::BLSR32rr, X86::BLSR32rm, 0 }, 00585 { X86::BLSR64rr, X86::BLSR64rm, 0 }, 00586 { X86::BZHI32rr, X86::BZHI32rm, 0 }, 00587 { X86::BZHI64rr, X86::BZHI64rm, 0 }, 00588 { X86::LZCNT16rr, X86::LZCNT16rm, 0 }, 00589 { X86::LZCNT32rr, X86::LZCNT32rm, 0 }, 00590 { X86::LZCNT64rr, X86::LZCNT64rm, 0 }, 00591 { X86::POPCNT16rr, X86::POPCNT16rm, 0 }, 00592 { X86::POPCNT32rr, X86::POPCNT32rm, 0 }, 00593 { X86::POPCNT64rr, X86::POPCNT64rm, 0 }, 00594 { X86::RORX32ri, X86::RORX32mi, 0 }, 00595 { X86::RORX64ri, X86::RORX64mi, 0 }, 00596 { X86::SARX32rr, X86::SARX32rm, 0 }, 00597 { X86::SARX64rr, X86::SARX64rm, 0 }, 00598 { X86::SHRX32rr, X86::SHRX32rm, 0 }, 00599 { X86::SHRX64rr, X86::SHRX64rm, 0 }, 00600 { X86::SHLX32rr, X86::SHLX32rm, 0 }, 00601 { X86::SHLX64rr, X86::SHLX64rm, 0 }, 00602 { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 }, 00603 { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 }, 00604 { X86::TZCNT16rr, X86::TZCNT16rm, 0 }, 00605 { X86::TZCNT32rr, X86::TZCNT32rm, 0 }, 00606 { X86::TZCNT64rr, X86::TZCNT64rm, 0 }, 00607 { X86::TZMSK32rr, X86::TZMSK32rm, 0 }, 00608 { X86::TZMSK64rr, X86::TZMSK64rm, 0 }, 00609 00610 // AVX-512 foldable instructions 00611 { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 }, 00612 { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 }, 00613 { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 }, 00614 { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 }, 00615 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 }, 00616 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 }, 00617 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 }, 00618 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 }, 00619 { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 }, 00620 { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 }, 00621 { X86::VPABSDZrr, X86::VPABSDZrm, 0 }, 00622 { X86::VPABSQZrr, X86::VPABSQZrm, 0 }, 00623 00624 // AES foldable instructions 00625 { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 }, 00626 { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 }, 00627 { X86::VAESIMCrr, X86::VAESIMCrm, TB_ALIGN_16 }, 00628 { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 } 00629 }; 00630 00631 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { 00632 unsigned RegOp = OpTbl1[i].RegOp; 00633 unsigned MemOp = OpTbl1[i].MemOp; 00634 unsigned Flags = OpTbl1[i].Flags; 00635 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, 00636 RegOp, MemOp, 00637 // Index 1, folded load 00638 Flags | TB_INDEX_1 | TB_FOLDED_LOAD); 00639 } 00640 00641 static const X86OpTblEntry OpTbl2[] = { 00642 { X86::ADC32rr, X86::ADC32rm, 0 }, 00643 { X86::ADC64rr, X86::ADC64rm, 0 }, 00644 { X86::ADD16rr, X86::ADD16rm, 0 }, 00645 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE }, 00646 { X86::ADD32rr, X86::ADD32rm, 0 }, 00647 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE }, 00648 { X86::ADD64rr, X86::ADD64rm, 0 }, 00649 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE }, 00650 { X86::ADD8rr, X86::ADD8rm, 0 }, 00651 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 }, 00652 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 }, 00653 { X86::ADDSDrr, X86::ADDSDrm, 0 }, 00654 { X86::ADDSSrr, X86::ADDSSrm, 0 }, 00655 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 }, 00656 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 }, 00657 { X86::AND16rr, X86::AND16rm, 0 }, 00658 { X86::AND32rr, X86::AND32rm, 0 }, 00659 { X86::AND64rr, X86::AND64rm, 0 }, 00660 { X86::AND8rr, X86::AND8rm, 0 }, 00661 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 }, 00662 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 }, 00663 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 }, 00664 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 }, 00665 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 }, 00666 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 }, 00667 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 }, 00668 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 }, 00669 { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, 00670 { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, 00671 { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, 00672 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, 00673 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, 00674 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, 00675 { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, 00676 { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, 00677 { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, 00678 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, 00679 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, 00680 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, 00681 { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, 00682 { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, 00683 { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, 00684 { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, 00685 { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, 00686 { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, 00687 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, 00688 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, 00689 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, 00690 { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, 00691 { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, 00692 { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, 00693 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, 00694 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, 00695 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, 00696 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, 00697 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, 00698 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, 00699 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, 00700 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, 00701 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, 00702 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, 00703 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, 00704 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, 00705 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, 00706 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, 00707 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, 00708 { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, 00709 { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, 00710 { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, 00711 { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, 00712 { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, 00713 { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, 00714 { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, 00715 { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, 00716 { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, 00717 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 }, 00718 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 }, 00719 { X86::CMPSDrr, X86::CMPSDrm, 0 }, 00720 { X86::CMPSSrr, X86::CMPSSrm, 0 }, 00721 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 }, 00722 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 }, 00723 { X86::DIVSDrr, X86::DIVSDrm, 0 }, 00724 { X86::DIVSSrr, X86::DIVSSrm, 0 }, 00725 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 }, 00726 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 }, 00727 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 }, 00728 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 }, 00729 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 }, 00730 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 }, 00731 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 }, 00732 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 }, 00733 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 }, 00734 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 }, 00735 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 }, 00736 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 }, 00737 { X86::IMUL16rr, X86::IMUL16rm, 0 }, 00738 { X86::IMUL32rr, X86::IMUL32rm, 0 }, 00739 { X86::IMUL64rr, X86::IMUL64rm, 0 }, 00740 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, 00741 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, 00742 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, 00743 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, 00744 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, 00745 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, 00746 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, 00747 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, 00748 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 }, 00749 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 }, 00750 { X86::MAXSDrr, X86::MAXSDrm, 0 }, 00751 { X86::MAXSSrr, X86::MAXSSrm, 0 }, 00752 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 }, 00753 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 }, 00754 { X86::MINSDrr, X86::MINSDrm, 0 }, 00755 { X86::MINSSrr, X86::MINSSrm, 0 }, 00756 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 }, 00757 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 }, 00758 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 }, 00759 { X86::MULSDrr, X86::MULSDrm, 0 }, 00760 { X86::MULSSrr, X86::MULSSrm, 0 }, 00761 { X86::OR16rr, X86::OR16rm, 0 }, 00762 { X86::OR32rr, X86::OR32rm, 0 }, 00763 { X86::OR64rr, X86::OR64rm, 0 }, 00764 { X86::OR8rr, X86::OR8rm, 0 }, 00765 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 }, 00766 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 }, 00767 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 }, 00768 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 }, 00769 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 }, 00770 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 }, 00771 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 }, 00772 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 }, 00773 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 }, 00774 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 }, 00775 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 }, 00776 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 }, 00777 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 }, 00778 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 }, 00779 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 }, 00780 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 }, 00781 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 }, 00782 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 }, 00783 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 }, 00784 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 }, 00785 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 }, 00786 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 }, 00787 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 }, 00788 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 }, 00789 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 }, 00790 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 }, 00791 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 }, 00792 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 }, 00793 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 }, 00794 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 }, 00795 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 }, 00796 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 }, 00797 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 }, 00798 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 }, 00799 { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 }, 00800 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 }, 00801 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 }, 00802 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 }, 00803 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 }, 00804 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 }, 00805 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 }, 00806 { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 }, 00807 { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 }, 00808 { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 }, 00809 { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 }, 00810 { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 }, 00811 { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 }, 00812 { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 }, 00813 { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 }, 00814 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 }, 00815 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 }, 00816 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 }, 00817 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 }, 00818 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 }, 00819 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 }, 00820 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 }, 00821 { X86::PORrr, X86::PORrm, TB_ALIGN_16 }, 00822 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 }, 00823 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 }, 00824 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 }, 00825 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 }, 00826 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 }, 00827 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 }, 00828 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 }, 00829 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 }, 00830 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 }, 00831 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 }, 00832 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 }, 00833 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 }, 00834 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 }, 00835 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 }, 00836 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 }, 00837 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 }, 00838 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 }, 00839 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 }, 00840 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 }, 00841 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 }, 00842 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 }, 00843 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 }, 00844 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 }, 00845 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 }, 00846 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 }, 00847 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 }, 00848 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 }, 00849 { X86::SBB32rr, X86::SBB32rm, 0 }, 00850 { X86::SBB64rr, X86::SBB64rm, 0 }, 00851 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 }, 00852 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 }, 00853 { X86::SUB16rr, X86::SUB16rm, 0 }, 00854 { X86::SUB32rr, X86::SUB32rm, 0 }, 00855 { X86::SUB64rr, X86::SUB64rm, 0 }, 00856 { X86::SUB8rr, X86::SUB8rm, 0 }, 00857 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 }, 00858 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 }, 00859 { X86::SUBSDrr, X86::SUBSDrm, 0 }, 00860 { X86::SUBSSrr, X86::SUBSSrm, 0 }, 00861 // FIXME: TEST*rr -> swapped operand of TEST*mr. 00862 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 }, 00863 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 }, 00864 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 }, 00865 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 }, 00866 { X86::XOR16rr, X86::XOR16rm, 0 }, 00867 { X86::XOR32rr, X86::XOR32rm, 0 }, 00868 { X86::XOR64rr, X86::XOR64rm, 0 }, 00869 { X86::XOR8rr, X86::XOR8rm, 0 }, 00870 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 }, 00871 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 }, 00872 // AVX 128-bit versions of foldable instructions 00873 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 }, 00874 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 }, 00875 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 }, 00876 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 }, 00877 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 }, 00878 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 }, 00879 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 }, 00880 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 }, 00881 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 }, 00882 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 }, 00883 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 }, 00884 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 }, 00885 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 }, 00886 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 }, 00887 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, 00888 { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, 00889 { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, 00890 { X86::VADDPDrr, X86::VADDPDrm, 0 }, 00891 { X86::VADDPSrr, X86::VADDPSrm, 0 }, 00892 { X86::VADDSDrr, X86::VADDSDrm, 0 }, 00893 { X86::VADDSSrr, X86::VADDSSrm, 0 }, 00894 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 }, 00895 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 }, 00896 { X86::VANDNPDrr, X86::VANDNPDrm, 0 }, 00897 { X86::VANDNPSrr, X86::VANDNPSrm, 0 }, 00898 { X86::VANDPDrr, X86::VANDPDrm, 0 }, 00899 { X86::VANDPSrr, X86::VANDPSrm, 0 }, 00900 { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 }, 00901 { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 }, 00902 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 }, 00903 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 }, 00904 { X86::VCMPPDrri, X86::VCMPPDrmi, 0 }, 00905 { X86::VCMPPSrri, X86::VCMPPSrmi, 0 }, 00906 { X86::VCMPSDrr, X86::VCMPSDrm, 0 }, 00907 { X86::VCMPSSrr, X86::VCMPSSrm, 0 }, 00908 { X86::VDIVPDrr, X86::VDIVPDrm, 0 }, 00909 { X86::VDIVPSrr, X86::VDIVPSrm, 0 }, 00910 { X86::VDIVSDrr, X86::VDIVSDrm, 0 }, 00911 { X86::VDIVSSrr, X86::VDIVSSrm, 0 }, 00912 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 }, 00913 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 }, 00914 { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 }, 00915 { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 }, 00916 { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 }, 00917 { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 }, 00918 { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 }, 00919 { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 }, 00920 { X86::VHADDPDrr, X86::VHADDPDrm, 0 }, 00921 { X86::VHADDPSrr, X86::VHADDPSrm, 0 }, 00922 { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 }, 00923 { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 }, 00924 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 }, 00925 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 }, 00926 { X86::VMAXPDrr, X86::VMAXPDrm, 0 }, 00927 { X86::VMAXPSrr, X86::VMAXPSrm, 0 }, 00928 { X86::VMAXSDrr, X86::VMAXSDrm, 0 }, 00929 { X86::VMAXSSrr, X86::VMAXSSrm, 0 }, 00930 { X86::VMINPDrr, X86::VMINPDrm, 0 }, 00931 { X86::VMINPSrr, X86::VMINPSrm, 0 }, 00932 { X86::VMINSDrr, X86::VMINSDrm, 0 }, 00933 { X86::VMINSSrr, X86::VMINSSrm, 0 }, 00934 { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 }, 00935 { X86::VMULPDrr, X86::VMULPDrm, 0 }, 00936 { X86::VMULPSrr, X86::VMULPSrm, 0 }, 00937 { X86::VMULSDrr, X86::VMULSDrm, 0 }, 00938 { X86::VMULSSrr, X86::VMULSSrm, 0 }, 00939 { X86::VORPDrr, X86::VORPDrm, 0 }, 00940 { X86::VORPSrr, X86::VORPSrm, 0 }, 00941 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 }, 00942 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 }, 00943 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 }, 00944 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 }, 00945 { X86::VPADDBrr, X86::VPADDBrm, 0 }, 00946 { X86::VPADDDrr, X86::VPADDDrm, 0 }, 00947 { X86::VPADDQrr, X86::VPADDQrm, 0 }, 00948 { X86::VPADDSBrr, X86::VPADDSBrm, 0 }, 00949 { X86::VPADDSWrr, X86::VPADDSWrm, 0 }, 00950 { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 }, 00951 { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 }, 00952 { X86::VPADDWrr, X86::VPADDWrm, 0 }, 00953 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 }, 00954 { X86::VPANDNrr, X86::VPANDNrm, 0 }, 00955 { X86::VPANDrr, X86::VPANDrm, 0 }, 00956 { X86::VPAVGBrr, X86::VPAVGBrm, 0 }, 00957 { X86::VPAVGWrr, X86::VPAVGWrm, 0 }, 00958 { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 }, 00959 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 }, 00960 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 }, 00961 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 }, 00962 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 }, 00963 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 }, 00964 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 }, 00965 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 }, 00966 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 }, 00967 { X86::VPHADDDrr, X86::VPHADDDrm, 0 }, 00968 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 }, 00969 { X86::VPHADDWrr, X86::VPHADDWrm, 0 }, 00970 { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 }, 00971 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 }, 00972 { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 }, 00973 { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 }, 00974 { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 }, 00975 { X86::VPINSRWrri, X86::VPINSRWrmi, 0 }, 00976 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 }, 00977 { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 }, 00978 { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 }, 00979 { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 }, 00980 { X86::VPMINSWrr, X86::VPMINSWrm, 0 }, 00981 { X86::VPMINUBrr, X86::VPMINUBrm, 0 }, 00982 { X86::VPMINSBrr, X86::VPMINSBrm, 0 }, 00983 { X86::VPMINSDrr, X86::VPMINSDrm, 0 }, 00984 { X86::VPMINUDrr, X86::VPMINUDrm, 0 }, 00985 { X86::VPMINUWrr, X86::VPMINUWrm, 0 }, 00986 { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 }, 00987 { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 }, 00988 { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 }, 00989 { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 }, 00990 { X86::VPMULDQrr, X86::VPMULDQrm, 0 }, 00991 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 }, 00992 { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 }, 00993 { X86::VPMULHWrr, X86::VPMULHWrm, 0 }, 00994 { X86::VPMULLDrr, X86::VPMULLDrm, 0 }, 00995 { X86::VPMULLWrr, X86::VPMULLWrm, 0 }, 00996 { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 }, 00997 { X86::VPORrr, X86::VPORrm, 0 }, 00998 { X86::VPSADBWrr, X86::VPSADBWrm, 0 }, 00999 { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 }, 01000 { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 }, 01001 { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 }, 01002 { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 }, 01003 { X86::VPSLLDrr, X86::VPSLLDrm, 0 }, 01004 { X86::VPSLLQrr, X86::VPSLLQrm, 0 }, 01005 { X86::VPSLLWrr, X86::VPSLLWrm, 0 }, 01006 { X86::VPSRADrr, X86::VPSRADrm, 0 }, 01007 { X86::VPSRAWrr, X86::VPSRAWrm, 0 }, 01008 { X86::VPSRLDrr, X86::VPSRLDrm, 0 }, 01009 { X86::VPSRLQrr, X86::VPSRLQrm, 0 }, 01010 { X86::VPSRLWrr, X86::VPSRLWrm, 0 }, 01011 { X86::VPSUBBrr, X86::VPSUBBrm, 0 }, 01012 { X86::VPSUBDrr, X86::VPSUBDrm, 0 }, 01013 { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 }, 01014 { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 }, 01015 { X86::VPSUBWrr, X86::VPSUBWrm, 0 }, 01016 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 }, 01017 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 }, 01018 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 }, 01019 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 }, 01020 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 }, 01021 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 }, 01022 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 }, 01023 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 }, 01024 { X86::VPXORrr, X86::VPXORrm, 0 }, 01025 { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 }, 01026 { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 }, 01027 { X86::VSUBPDrr, X86::VSUBPDrm, 0 }, 01028 { X86::VSUBPSrr, X86::VSUBPSrm, 0 }, 01029 { X86::VSUBSDrr, X86::VSUBSDrm, 0 }, 01030 { X86::VSUBSSrr, X86::VSUBSSrm, 0 }, 01031 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 }, 01032 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 }, 01033 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 }, 01034 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 }, 01035 { X86::VXORPDrr, X86::VXORPDrm, 0 }, 01036 { X86::VXORPSrr, X86::VXORPSrm, 0 }, 01037 // AVX 256-bit foldable instructions 01038 { X86::VADDPDYrr, X86::VADDPDYrm, 0 }, 01039 { X86::VADDPSYrr, X86::VADDPSYrm, 0 }, 01040 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 }, 01041 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 }, 01042 { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 }, 01043 { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 }, 01044 { X86::VANDPDYrr, X86::VANDPDYrm, 0 }, 01045 { X86::VANDPSYrr, X86::VANDPSYrm, 0 }, 01046 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 }, 01047 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 }, 01048 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 }, 01049 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 }, 01050 { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 }, 01051 { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 }, 01052 { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 }, 01053 { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 }, 01054 { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 }, 01055 { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 }, 01056 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 }, 01057 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 }, 01058 { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 }, 01059 { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 }, 01060 { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 }, 01061 { X86::VMINPDYrr, X86::VMINPDYrm, 0 }, 01062 { X86::VMINPSYrr, X86::VMINPSYrm, 0 }, 01063 { X86::VMULPDYrr, X86::VMULPDYrm, 0 }, 01064 { X86::VMULPSYrr, X86::VMULPSYrm, 0 }, 01065 { X86::VORPDYrr, X86::VORPDYrm, 0 }, 01066 { X86::VORPSYrr, X86::VORPSYrm, 0 }, 01067 { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 }, 01068 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 }, 01069 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 }, 01070 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 }, 01071 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 }, 01072 { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 }, 01073 { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 }, 01074 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 }, 01075 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 }, 01076 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 }, 01077 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 }, 01078 { X86::VXORPDYrr, X86::VXORPDYrm, 0 }, 01079 { X86::VXORPSYrr, X86::VXORPSYrm, 0 }, 01080 // AVX2 foldable instructions 01081 { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 }, 01082 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 }, 01083 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 }, 01084 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 }, 01085 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 }, 01086 { X86::VPADDBYrr, X86::VPADDBYrm, 0 }, 01087 { X86::VPADDDYrr, X86::VPADDDYrm, 0 }, 01088 { X86::VPADDQYrr, X86::VPADDQYrm, 0 }, 01089 { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 }, 01090 { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 }, 01091 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 }, 01092 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 }, 01093 { X86::VPADDWYrr, X86::VPADDWYrm, 0 }, 01094 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 }, 01095 { X86::VPANDNYrr, X86::VPANDNYrm, 0 }, 01096 { X86::VPANDYrr, X86::VPANDYrm, 0 }, 01097 { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 }, 01098 { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 }, 01099 { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 }, 01100 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 }, 01101 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 }, 01102 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 }, 01103 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 }, 01104 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 }, 01105 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 }, 01106 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 }, 01107 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 }, 01108 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 }, 01109 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 }, 01110 { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 }, 01111 { X86::VPERMDYrr, X86::VPERMDYrm, 0 }, 01112 { X86::VPERMPDYri, X86::VPERMPDYmi, 0 }, 01113 { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 }, 01114 { X86::VPERMQYri, X86::VPERMQYmi, 0 }, 01115 { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 }, 01116 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 }, 01117 { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 }, 01118 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 }, 01119 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 }, 01120 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 }, 01121 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 }, 01122 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 }, 01123 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 }, 01124 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 }, 01125 { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 }, 01126 { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 }, 01127 { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 }, 01128 { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 }, 01129 { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 }, 01130 { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 }, 01131 { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 }, 01132 { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 }, 01133 { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 }, 01134 { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 }, 01135 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 }, 01136 { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 }, 01137 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 }, 01138 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 }, 01139 { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 }, 01140 { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 }, 01141 { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 }, 01142 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 }, 01143 { X86::VPORYrr, X86::VPORYrm, 0 }, 01144 { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 }, 01145 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 }, 01146 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 }, 01147 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 }, 01148 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 }, 01149 { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 }, 01150 { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 }, 01151 { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 }, 01152 { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 }, 01153 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 }, 01154 { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 }, 01155 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 }, 01156 { X86::VPSRADYrr, X86::VPSRADYrm, 0 }, 01157 { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 }, 01158 { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 }, 01159 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 }, 01160 { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 }, 01161 { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 }, 01162 { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 }, 01163 { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 }, 01164 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 }, 01165 { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 }, 01166 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 }, 01167 { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 }, 01168 { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 }, 01169 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 }, 01170 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 }, 01171 { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 }, 01172 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 }, 01173 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 }, 01174 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 }, 01175 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 }, 01176 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 }, 01177 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 }, 01178 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 }, 01179 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 }, 01180 { X86::VPXORYrr, X86::VPXORYrm, 0 }, 01181 // FIXME: add AVX 256-bit foldable instructions 01182 01183 // FMA4 foldable patterns 01184 { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 }, 01185 { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 }, 01186 { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_16 }, 01187 { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_16 }, 01188 { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_32 }, 01189 { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_32 }, 01190 { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 }, 01191 { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 }, 01192 { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_16 }, 01193 { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_16 }, 01194 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_32 }, 01195 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_32 }, 01196 { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 }, 01197 { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 }, 01198 { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_16 }, 01199 { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_16 }, 01200 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_32 }, 01201 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_32 }, 01202 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 }, 01203 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 }, 01204 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_16 }, 01205 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_16 }, 01206 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_32 }, 01207 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_32 }, 01208 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_16 }, 01209 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_16 }, 01210 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_32 }, 01211 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_32 }, 01212 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_16 }, 01213 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_16 }, 01214 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_32 }, 01215 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_32 }, 01216 01217 // BMI/BMI2 foldable instructions 01218 { X86::ANDN32rr, X86::ANDN32rm, 0 }, 01219 { X86::ANDN64rr, X86::ANDN64rm, 0 }, 01220 { X86::MULX32rr, X86::MULX32rm, 0 }, 01221 { X86::MULX64rr, X86::MULX64rm, 0 }, 01222 { X86::PDEP32rr, X86::PDEP32rm, 0 }, 01223 { X86::PDEP64rr, X86::PDEP64rm, 0 }, 01224 { X86::PEXT32rr, X86::PEXT32rm, 0 }, 01225 { X86::PEXT64rr, X86::PEXT64rm, 0 }, 01226 01227 // AVX-512 foldable instructions 01228 { X86::VADDPSZrr, X86::VADDPSZrm, 0 }, 01229 { X86::VADDPDZrr, X86::VADDPDZrm, 0 }, 01230 { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 }, 01231 { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 }, 01232 { X86::VMULPSZrr, X86::VMULPSZrm, 0 }, 01233 { X86::VMULPDZrr, X86::VMULPDZrm, 0 }, 01234 { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 }, 01235 { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 }, 01236 { X86::VMINPSZrr, X86::VMINPSZrm, 0 }, 01237 { X86::VMINPDZrr, X86::VMINPDZrm, 0 }, 01238 { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 }, 01239 { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 }, 01240 { X86::VPADDDZrr, X86::VPADDDZrm, 0 }, 01241 { X86::VPADDQZrr, X86::VPADDQZrm, 0 }, 01242 { X86::VPERMPDZri, X86::VPERMPDZmi, 0 }, 01243 { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 }, 01244 { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 }, 01245 { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 }, 01246 { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 }, 01247 { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 }, 01248 { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 }, 01249 { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 }, 01250 { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 }, 01251 { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 }, 01252 { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 }, 01253 { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 }, 01254 { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 }, 01255 { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 }, 01256 { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 }, 01257 { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 }, 01258 { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 }, 01259 { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 }, 01260 { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 }, 01261 { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 }, 01262 { X86::VALIGNQrri, X86::VALIGNQrmi, 0 }, 01263 { X86::VALIGNDrri, X86::VALIGNDrmi, 0 }, 01264 { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 }, 01265 01266 // AES foldable instructions 01267 { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 }, 01268 { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 }, 01269 { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 }, 01270 { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 }, 01271 { X86::VAESDECLASTrr, X86::VAESDECLASTrm, TB_ALIGN_16 }, 01272 { X86::VAESDECrr, X86::VAESDECrm, TB_ALIGN_16 }, 01273 { X86::VAESENCLASTrr, X86::VAESENCLASTrm, TB_ALIGN_16 }, 01274 { X86::VAESENCrr, X86::VAESENCrm, TB_ALIGN_16 }, 01275 01276 // SHA foldable instructions 01277 { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 }, 01278 { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 }, 01279 { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 }, 01280 { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 }, 01281 { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 }, 01282 { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 }, 01283 { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 }, 01284 }; 01285 01286 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { 01287 unsigned RegOp = OpTbl2[i].RegOp; 01288 unsigned MemOp = OpTbl2[i].MemOp; 01289 unsigned Flags = OpTbl2[i].Flags; 01290 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, 01291 RegOp, MemOp, 01292 // Index 2, folded load 01293 Flags | TB_INDEX_2 | TB_FOLDED_LOAD); 01294 } 01295 01296 static const X86OpTblEntry OpTbl3[] = { 01297 // FMA foldable instructions 01298 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE }, 01299 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE }, 01300 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE }, 01301 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE }, 01302 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE }, 01303 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE }, 01304 01305 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE }, 01306 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE }, 01307 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE }, 01308 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE }, 01309 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE }, 01310 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE }, 01311 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE }, 01312 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE }, 01313 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE }, 01314 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE }, 01315 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE }, 01316 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE }, 01317 01318 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE }, 01319 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE }, 01320 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE }, 01321 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE }, 01322 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE }, 01323 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE }, 01324 01325 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE }, 01326 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE }, 01327 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE }, 01328 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE }, 01329 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE }, 01330 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE }, 01331 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE }, 01332 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE }, 01333 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE }, 01334 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE }, 01335 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE }, 01336 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE }, 01337 01338 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE }, 01339 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE }, 01340 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE }, 01341 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE }, 01342 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE }, 01343 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE }, 01344 01345 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE }, 01346 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE }, 01347 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE }, 01348 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE }, 01349 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE }, 01350 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE }, 01351 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE }, 01352 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE }, 01353 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE }, 01354 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE }, 01355 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE }, 01356 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE }, 01357 01358 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE }, 01359 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE }, 01360 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE }, 01361 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE }, 01362 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE }, 01363 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE }, 01364 01365 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE }, 01366 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE }, 01367 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE }, 01368 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE }, 01369 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE }, 01370 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE }, 01371 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE }, 01372 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE }, 01373 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE }, 01374 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE }, 01375 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE }, 01376 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE }, 01377 01378 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE }, 01379 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE }, 01380 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE }, 01381 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE }, 01382 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE }, 01383 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE }, 01384 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE }, 01385 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE }, 01386 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE }, 01387 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE }, 01388 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE }, 01389 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE }, 01390 01391 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE }, 01392 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE }, 01393 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE }, 01394 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE }, 01395 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE }, 01396 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE }, 01397 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE }, 01398 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE }, 01399 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE }, 01400 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE }, 01401 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE }, 01402 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE }, 01403 01404 // FMA4 foldable patterns 01405 { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 }, 01406 { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 }, 01407 { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 }, 01408 { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 }, 01409 { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 }, 01410 { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 }, 01411 { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 }, 01412 { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 }, 01413 { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 }, 01414 { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 }, 01415 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 }, 01416 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 }, 01417 { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 }, 01418 { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 }, 01419 { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 }, 01420 { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 }, 01421 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 }, 01422 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 }, 01423 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 }, 01424 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 }, 01425 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 }, 01426 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 }, 01427 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 }, 01428 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 }, 01429 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 }, 01430 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 }, 01431 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 }, 01432 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 }, 01433 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 }, 01434 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 }, 01435 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 }, 01436 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 }, 01437 // AVX-512 VPERMI instructions with 3 source operands. 01438 { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 }, 01439 { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 }, 01440 { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 }, 01441 { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 }, 01442 { X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 }, 01443 { X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 }, 01444 { X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 }, 01445 { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 } 01446 }; 01447 01448 for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) { 01449 unsigned RegOp = OpTbl3[i].RegOp; 01450 unsigned MemOp = OpTbl3[i].MemOp; 01451 unsigned Flags = OpTbl3[i].Flags; 01452 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, 01453 RegOp, MemOp, 01454 // Index 3, folded load 01455 Flags | TB_INDEX_3 | TB_FOLDED_LOAD); 01456 } 01457 01458 } 01459 01460 void 01461 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, 01462 MemOp2RegOpTableType &M2RTable, 01463 unsigned RegOp, unsigned MemOp, unsigned Flags) { 01464 if ((Flags & TB_NO_FORWARD) == 0) { 01465 assert(!R2MTable.count(RegOp) && "Duplicate entry!"); 01466 R2MTable[RegOp] = std::make_pair(MemOp, Flags); 01467 } 01468 if ((Flags & TB_NO_REVERSE) == 0) { 01469 assert(!M2RTable.count(MemOp) && 01470 "Duplicated entries in unfolding maps?"); 01471 M2RTable[MemOp] = std::make_pair(RegOp, Flags); 01472 } 01473 } 01474 01475 bool 01476 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 01477 unsigned &SrcReg, unsigned &DstReg, 01478 unsigned &SubIdx) const { 01479 switch (MI.getOpcode()) { 01480 default: break; 01481 case X86::MOVSX16rr8: 01482 case X86::MOVZX16rr8: 01483 case X86::MOVSX32rr8: 01484 case X86::MOVZX32rr8: 01485 case X86::MOVSX64rr8: 01486 if (!Subtarget.is64Bit()) 01487 // It's not always legal to reference the low 8-bit of the larger 01488 // register in 32-bit mode. 01489 return false; 01490 case X86::MOVSX32rr16: 01491 case X86::MOVZX32rr16: 01492 case X86::MOVSX64rr16: 01493 case X86::MOVSX64rr32: { 01494 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 01495 // Be conservative. 01496 return false; 01497 SrcReg = MI.getOperand(1).getReg(); 01498 DstReg = MI.getOperand(0).getReg(); 01499 switch (MI.getOpcode()) { 01500 default: llvm_unreachable("Unreachable!"); 01501 case X86::MOVSX16rr8: 01502 case X86::MOVZX16rr8: 01503 case X86::MOVSX32rr8: 01504 case X86::MOVZX32rr8: 01505 case X86::MOVSX64rr8: 01506 SubIdx = X86::sub_8bit; 01507 break; 01508 case X86::MOVSX32rr16: 01509 case X86::MOVZX32rr16: 01510 case X86::MOVSX64rr16: 01511 SubIdx = X86::sub_16bit; 01512 break; 01513 case X86::MOVSX64rr32: 01514 SubIdx = X86::sub_32bit; 01515 break; 01516 } 01517 return true; 01518 } 01519 } 01520 return false; 01521 } 01522 01523 /// isFrameOperand - Return true and the FrameIndex if the specified 01524 /// operand and follow operands form a reference to the stack frame. 01525 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, 01526 int &FrameIndex) const { 01527 if (MI->getOperand(Op+X86::AddrBaseReg).isFI() && 01528 MI->getOperand(Op+X86::AddrScaleAmt).isImm() && 01529 MI->getOperand(Op+X86::AddrIndexReg).isReg() && 01530 MI->getOperand(Op+X86::AddrDisp).isImm() && 01531 MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 && 01532 MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 && 01533 MI->getOperand(Op+X86::AddrDisp).getImm() == 0) { 01534 FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex(); 01535 return true; 01536 } 01537 return false; 01538 } 01539 01540 static bool isFrameLoadOpcode(int Opcode) { 01541 switch (Opcode) { 01542 default: 01543 return false; 01544 case X86::MOV8rm: 01545 case X86::MOV16rm: 01546 case X86::MOV32rm: 01547 case X86::MOV64rm: 01548 case X86::LD_Fp64m: 01549 case X86::MOVSSrm: 01550 case X86::MOVSDrm: 01551 case X86::MOVAPSrm: 01552 case X86::MOVAPDrm: 01553 case X86::MOVDQArm: 01554 case X86::VMOVSSrm: 01555 case X86::VMOVSDrm: 01556 case X86::VMOVAPSrm: 01557 case X86::VMOVAPDrm: 01558 case X86::VMOVDQArm: 01559 case X86::VMOVAPSYrm: 01560 case X86::VMOVAPDYrm: 01561 case X86::VMOVDQAYrm: 01562 case X86::MMX_MOVD64rm: 01563 case X86::MMX_MOVQ64rm: 01564 case X86::VMOVAPSZrm: 01565 case X86::VMOVUPSZrm: 01566 return true; 01567 } 01568 } 01569 01570 static bool isFrameStoreOpcode(int Opcode) { 01571 switch (Opcode) { 01572 default: break; 01573 case X86::MOV8mr: 01574 case X86::MOV16mr: 01575 case X86::MOV32mr: 01576 case X86::MOV64mr: 01577 case X86::ST_FpP64m: 01578 case X86::MOVSSmr: 01579 case X86::MOVSDmr: 01580 case X86::MOVAPSmr: 01581 case X86::MOVAPDmr: 01582 case X86::MOVDQAmr: 01583 case X86::VMOVSSmr: 01584 case X86::VMOVSDmr: 01585 case X86::VMOVAPSmr: 01586 case X86::VMOVAPDmr: 01587 case X86::VMOVDQAmr: 01588 case X86::VMOVAPSYmr: 01589 case X86::VMOVAPDYmr: 01590 case X86::VMOVDQAYmr: 01591 case X86::VMOVUPSZmr: 01592 case X86::VMOVAPSZmr: 01593 case X86::MMX_MOVD64mr: 01594 case X86::MMX_MOVQ64mr: 01595 case X86::MMX_MOVNTQmr: 01596 return true; 01597 } 01598 return false; 01599 } 01600 01601 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 01602 int &FrameIndex) const { 01603 if (isFrameLoadOpcode(MI->getOpcode())) 01604 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 01605 return MI->getOperand(0).getReg(); 01606 return 0; 01607 } 01608 01609 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, 01610 int &FrameIndex) const { 01611 if (isFrameLoadOpcode(MI->getOpcode())) { 01612 unsigned Reg; 01613 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 01614 return Reg; 01615 // Check for post-frame index elimination operations 01616 const MachineMemOperand *Dummy; 01617 return hasLoadFromStackSlot(MI, Dummy, FrameIndex); 01618 } 01619 return 0; 01620 } 01621 01622 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, 01623 int &FrameIndex) const { 01624 if (isFrameStoreOpcode(MI->getOpcode())) 01625 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && 01626 isFrameOperand(MI, 0, FrameIndex)) 01627 return MI->getOperand(X86::AddrNumOperands).getReg(); 01628 return 0; 01629 } 01630 01631 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, 01632 int &FrameIndex) const { 01633 if (isFrameStoreOpcode(MI->getOpcode())) { 01634 unsigned Reg; 01635 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 01636 return Reg; 01637 // Check for post-frame index elimination operations 01638 const MachineMemOperand *Dummy; 01639 return hasStoreToStackSlot(MI, Dummy, FrameIndex); 01640 } 01641 return 0; 01642 } 01643 01644 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by 01645 /// X86::MOVPC32r. 01646 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { 01647 // Don't waste compile time scanning use-def chains of physregs. 01648 if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) 01649 return false; 01650 bool isPICBase = false; 01651 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), 01652 E = MRI.def_instr_end(); I != E; ++I) { 01653 MachineInstr *DefMI = &*I; 01654 if (DefMI->getOpcode() != X86::MOVPC32r) 01655 return false; 01656 assert(!isPICBase && "More than one PIC base?"); 01657 isPICBase = true; 01658 } 01659 return isPICBase; 01660 } 01661 01662 bool 01663 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, 01664 AliasAnalysis *AA) const { 01665 switch (MI->getOpcode()) { 01666 default: break; 01667 case X86::MOV8rm: 01668 case X86::MOV16rm: 01669 case X86::MOV32rm: 01670 case X86::MOV64rm: 01671 case X86::LD_Fp64m: 01672 case X86::MOVSSrm: 01673 case X86::MOVSDrm: 01674 case X86::MOVAPSrm: 01675 case X86::MOVUPSrm: 01676 case X86::MOVAPDrm: 01677 case X86::MOVDQArm: 01678 case X86::MOVDQUrm: 01679 case X86::VMOVSSrm: 01680 case X86::VMOVSDrm: 01681 case X86::VMOVAPSrm: 01682 case X86::VMOVUPSrm: 01683 case X86::VMOVAPDrm: 01684 case X86::VMOVDQArm: 01685 case X86::VMOVDQUrm: 01686 case X86::VMOVAPSYrm: 01687 case X86::VMOVUPSYrm: 01688 case X86::VMOVAPDYrm: 01689 case X86::VMOVDQAYrm: 01690 case X86::VMOVDQUYrm: 01691 case X86::MMX_MOVD64rm: 01692 case X86::MMX_MOVQ64rm: 01693 case X86::FsVMOVAPSrm: 01694 case X86::FsVMOVAPDrm: 01695 case X86::FsMOVAPSrm: 01696 case X86::FsMOVAPDrm: { 01697 // Loads from constant pools are trivially rematerializable. 01698 if (MI->getOperand(1+X86::AddrBaseReg).isReg() && 01699 MI->getOperand(1+X86::AddrScaleAmt).isImm() && 01700 MI->getOperand(1+X86::AddrIndexReg).isReg() && 01701 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 && 01702 MI->isInvariantLoad(AA)) { 01703 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg(); 01704 if (BaseReg == 0 || BaseReg == X86::RIP) 01705 return true; 01706 // Allow re-materialization of PIC load. 01707 if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal()) 01708 return false; 01709 const MachineFunction &MF = *MI->getParent()->getParent(); 01710 const MachineRegisterInfo &MRI = MF.getRegInfo(); 01711 return regIsPICBase(BaseReg, MRI); 01712 } 01713 return false; 01714 } 01715 01716 case X86::LEA32r: 01717 case X86::LEA64r: { 01718 if (MI->getOperand(1+X86::AddrScaleAmt).isImm() && 01719 MI->getOperand(1+X86::AddrIndexReg).isReg() && 01720 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 && 01721 !MI->getOperand(1+X86::AddrDisp).isReg()) { 01722 // lea fi#, lea GV, etc. are all rematerializable. 01723 if (!MI->getOperand(1+X86::AddrBaseReg).isReg()) 01724 return true; 01725 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg(); 01726 if (BaseReg == 0) 01727 return true; 01728 // Allow re-materialization of lea PICBase + x. 01729 const MachineFunction &MF = *MI->getParent()->getParent(); 01730 const MachineRegisterInfo &MRI = MF.getRegInfo(); 01731 return regIsPICBase(BaseReg, MRI); 01732 } 01733 return false; 01734 } 01735 } 01736 01737 // All other instructions marked M_REMATERIALIZABLE are always trivially 01738 // rematerializable. 01739 return true; 01740 } 01741 01742 bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB, 01743 MachineBasicBlock::iterator I) const { 01744 MachineBasicBlock::iterator E = MBB.end(); 01745 01746 // For compile time consideration, if we are not able to determine the 01747 // safety after visiting 4 instructions in each direction, we will assume 01748 // it's not safe. 01749 MachineBasicBlock::iterator Iter = I; 01750 for (unsigned i = 0; Iter != E && i < 4; ++i) { 01751 bool SeenDef = false; 01752 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 01753 MachineOperand &MO = Iter->getOperand(j); 01754 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) 01755 SeenDef = true; 01756 if (!MO.isReg()) 01757 continue; 01758 if (MO.getReg() == X86::EFLAGS) { 01759 if (MO.isUse()) 01760 return false; 01761 SeenDef = true; 01762 } 01763 } 01764 01765 if (SeenDef) 01766 // This instruction defines EFLAGS, no need to look any further. 01767 return true; 01768 ++Iter; 01769 // Skip over DBG_VALUE. 01770 while (Iter != E && Iter->isDebugValue()) 01771 ++Iter; 01772 } 01773 01774 // It is safe to clobber EFLAGS at the end of a block of no successor has it 01775 // live in. 01776 if (Iter == E) { 01777 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), 01778 SE = MBB.succ_end(); SI != SE; ++SI) 01779 if ((*SI)->isLiveIn(X86::EFLAGS)) 01780 return false; 01781 return true; 01782 } 01783 01784 MachineBasicBlock::iterator B = MBB.begin(); 01785 Iter = I; 01786 for (unsigned i = 0; i < 4; ++i) { 01787 // If we make it to the beginning of the block, it's safe to clobber 01788 // EFLAGS iff EFLAGS is not live-in. 01789 if (Iter == B) 01790 return !MBB.isLiveIn(X86::EFLAGS); 01791 01792 --Iter; 01793 // Skip over DBG_VALUE. 01794 while (Iter != B && Iter->isDebugValue()) 01795 --Iter; 01796 01797 bool SawKill = false; 01798 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 01799 MachineOperand &MO = Iter->getOperand(j); 01800 // A register mask may clobber EFLAGS, but we should still look for a 01801 // live EFLAGS def. 01802 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) 01803 SawKill = true; 01804 if (MO.isReg() && MO.getReg() == X86::EFLAGS) { 01805 if (MO.isDef()) return MO.isDead(); 01806 if (MO.isKill()) SawKill = true; 01807 } 01808 } 01809 01810 if (SawKill) 01811 // This instruction kills EFLAGS and doesn't redefine it, so 01812 // there's no need to look further. 01813 return true; 01814 } 01815 01816 // Conservative answer. 01817 return false; 01818 } 01819 01820 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 01821 MachineBasicBlock::iterator I, 01822 unsigned DestReg, unsigned SubIdx, 01823 const MachineInstr *Orig, 01824 const TargetRegisterInfo &TRI) const { 01825 // MOV32r0 is implemented with a xor which clobbers condition code. 01826 // Re-materialize it as movri instructions to avoid side effects. 01827 unsigned Opc = Orig->getOpcode(); 01828 if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) { 01829 DebugLoc DL = Orig->getDebugLoc(); 01830 BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0)) 01831 .addImm(0); 01832 } else { 01833 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 01834 MBB.insert(I, MI); 01835 } 01836 01837 MachineInstr *NewMI = std::prev(I); 01838 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); 01839 } 01840 01841 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that 01842 /// is not marked dead. 01843 static bool hasLiveCondCodeDef(MachineInstr *MI) { 01844 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 01845 MachineOperand &MO = MI->getOperand(i); 01846 if (MO.isReg() && MO.isDef() && 01847 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 01848 return true; 01849 } 01850 } 01851 return false; 01852 } 01853 01854 /// getTruncatedShiftCount - check whether the shift count for a machine operand 01855 /// is non-zero. 01856 inline static unsigned getTruncatedShiftCount(MachineInstr *MI, 01857 unsigned ShiftAmtOperandIdx) { 01858 // The shift count is six bits with the REX.W prefix and five bits without. 01859 unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31; 01860 unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm(); 01861 return Imm & ShiftCountMask; 01862 } 01863 01864 /// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate 01865 /// can be represented by a LEA instruction. 01866 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { 01867 // Left shift instructions can be transformed into load-effective-address 01868 // instructions if we can encode them appropriately. 01869 // A LEA instruction utilizes a SIB byte to encode it's scale factor. 01870 // The SIB.scale field is two bits wide which means that we can encode any 01871 // shift amount less than 4. 01872 return ShAmt < 4 && ShAmt > 0; 01873 } 01874 01875 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src, 01876 unsigned Opc, bool AllowSP, 01877 unsigned &NewSrc, bool &isKill, bool &isUndef, 01878 MachineOperand &ImplicitOp) const { 01879 MachineFunction &MF = *MI->getParent()->getParent(); 01880 const TargetRegisterClass *RC; 01881 if (AllowSP) { 01882 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; 01883 } else { 01884 RC = Opc != X86::LEA32r ? 01885 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; 01886 } 01887 unsigned SrcReg = Src.getReg(); 01888 01889 // For both LEA64 and LEA32 the register already has essentially the right 01890 // type (32-bit or 64-bit) we may just need to forbid SP. 01891 if (Opc != X86::LEA64_32r) { 01892 NewSrc = SrcReg; 01893 isKill = Src.isKill(); 01894 isUndef = Src.isUndef(); 01895 01896 if (TargetRegisterInfo::isVirtualRegister(NewSrc) && 01897 !MF.getRegInfo().constrainRegClass(NewSrc, RC)) 01898 return false; 01899 01900 return true; 01901 } 01902 01903 // This is for an LEA64_32r and incoming registers are 32-bit. One way or 01904 // another we need to add 64-bit registers to the final MI. 01905 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { 01906 ImplicitOp = Src; 01907 ImplicitOp.setImplicit(); 01908 01909 NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64); 01910 MachineBasicBlock::LivenessQueryResult LQR = 01911 MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI); 01912 01913 switch (LQR) { 01914 case MachineBasicBlock::LQR_Unknown: 01915 // We can't give sane liveness flags to the instruction, abandon LEA 01916 // formation. 01917 return false; 01918 case MachineBasicBlock::LQR_Live: 01919 isKill = MI->killsRegister(SrcReg); 01920 isUndef = false; 01921 break; 01922 default: 01923 // The physreg itself is dead, so we have to use it as an <undef>. 01924 isKill = false; 01925 isUndef = true; 01926 break; 01927 } 01928 } else { 01929 // Virtual register of the wrong class, we have to create a temporary 64-bit 01930 // vreg to feed into the LEA. 01931 NewSrc = MF.getRegInfo().createVirtualRegister(RC); 01932 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 01933 get(TargetOpcode::COPY)) 01934 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) 01935 .addOperand(Src); 01936 01937 // Which is obviously going to be dead after we're done with it. 01938 isKill = true; 01939 isUndef = false; 01940 } 01941 01942 // We've set all the parameters without issue. 01943 return true; 01944 } 01945 01946 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when 01947 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting 01948 /// to a 32-bit superregister and then truncating back down to a 16-bit 01949 /// subregister. 01950 MachineInstr * 01951 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, 01952 MachineFunction::iterator &MFI, 01953 MachineBasicBlock::iterator &MBBI, 01954 LiveVariables *LV) const { 01955 MachineInstr *MI = MBBI; 01956 unsigned Dest = MI->getOperand(0).getReg(); 01957 unsigned Src = MI->getOperand(1).getReg(); 01958 bool isDead = MI->getOperand(0).isDead(); 01959 bool isKill = MI->getOperand(1).isKill(); 01960 01961 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); 01962 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); 01963 unsigned Opc, leaInReg; 01964 if (Subtarget.is64Bit()) { 01965 Opc = X86::LEA64_32r; 01966 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 01967 } else { 01968 Opc = X86::LEA32r; 01969 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 01970 } 01971 01972 // Build and insert into an implicit UNDEF value. This is OK because 01973 // well be shifting and then extracting the lower 16-bits. 01974 // This has the potential to cause partial register stall. e.g. 01975 // movw (%rbp,%rcx,2), %dx 01976 // leal -65(%rdx), %esi 01977 // But testing has shown this *does* help performance in 64-bit mode (at 01978 // least on modern x86 machines). 01979 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); 01980 MachineInstr *InsMI = 01981 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 01982 .addReg(leaInReg, RegState::Define, X86::sub_16bit) 01983 .addReg(Src, getKillRegState(isKill)); 01984 01985 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), 01986 get(Opc), leaOutReg); 01987 switch (MIOpc) { 01988 default: llvm_unreachable("Unreachable!"); 01989 case X86::SHL16ri: { 01990 unsigned ShAmt = MI->getOperand(2).getImm(); 01991 MIB.addReg(0).addImm(1 << ShAmt) 01992 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); 01993 break; 01994 } 01995 case X86::INC16r: 01996 case X86::INC64_16r: 01997 addRegOffset(MIB, leaInReg, true, 1); 01998 break; 01999 case X86::DEC16r: 02000 case X86::DEC64_16r: 02001 addRegOffset(MIB, leaInReg, true, -1); 02002 break; 02003 case X86::ADD16ri: 02004 case X86::ADD16ri8: 02005 case X86::ADD16ri_DB: 02006 case X86::ADD16ri8_DB: 02007 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); 02008 break; 02009 case X86::ADD16rr: 02010 case X86::ADD16rr_DB: { 02011 unsigned Src2 = MI->getOperand(2).getReg(); 02012 bool isKill2 = MI->getOperand(2).isKill(); 02013 unsigned leaInReg2 = 0; 02014 MachineInstr *InsMI2 = nullptr; 02015 if (Src == Src2) { 02016 // ADD16rr %reg1028<kill>, %reg1028 02017 // just a single insert_subreg. 02018 addRegReg(MIB, leaInReg, true, leaInReg, false); 02019 } else { 02020 if (Subtarget.is64Bit()) 02021 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 02022 else 02023 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 02024 // Build and insert into an implicit UNDEF value. This is OK because 02025 // well be shifting and then extracting the lower 16-bits. 02026 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2); 02027 InsMI2 = 02028 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) 02029 .addReg(leaInReg2, RegState::Define, X86::sub_16bit) 02030 .addReg(Src2, getKillRegState(isKill2)); 02031 addRegReg(MIB, leaInReg, true, leaInReg2, true); 02032 } 02033 if (LV && isKill2 && InsMI2) 02034 LV->replaceKillInstruction(Src2, MI, InsMI2); 02035 break; 02036 } 02037 } 02038 02039 MachineInstr *NewMI = MIB; 02040 MachineInstr *ExtMI = 02041 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 02042 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 02043 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); 02044 02045 if (LV) { 02046 // Update live variables 02047 LV->getVarInfo(leaInReg).Kills.push_back(NewMI); 02048 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); 02049 if (isKill) 02050 LV->replaceKillInstruction(Src, MI, InsMI); 02051 if (isDead) 02052 LV->replaceKillInstruction(Dest, MI, ExtMI); 02053 } 02054 02055 return ExtMI; 02056 } 02057 02058 /// convertToThreeAddress - This method must be implemented by targets that 02059 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 02060 /// may be able to convert a two-address instruction into a true 02061 /// three-address instruction on demand. This allows the X86 target (for 02062 /// example) to convert ADD and SHL instructions into LEA instructions if they 02063 /// would require register copies due to two-addressness. 02064 /// 02065 /// This method returns a null pointer if the transformation cannot be 02066 /// performed, otherwise it returns the new instruction. 02067 /// 02068 MachineInstr * 02069 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 02070 MachineBasicBlock::iterator &MBBI, 02071 LiveVariables *LV) const { 02072 MachineInstr *MI = MBBI; 02073 02074 // The following opcodes also sets the condition code register(s). Only 02075 // convert them to equivalent lea if the condition code register def's 02076 // are dead! 02077 if (hasLiveCondCodeDef(MI)) 02078 return nullptr; 02079 02080 MachineFunction &MF = *MI->getParent()->getParent(); 02081 // All instructions input are two-addr instructions. Get the known operands. 02082 const MachineOperand &Dest = MI->getOperand(0); 02083 const MachineOperand &Src = MI->getOperand(1); 02084 02085 MachineInstr *NewMI = nullptr; 02086 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When 02087 // we have better subtarget support, enable the 16-bit LEA generation here. 02088 // 16-bit LEA is also slow on Core2. 02089 bool DisableLEA16 = true; 02090 bool is64Bit = Subtarget.is64Bit(); 02091 02092 unsigned MIOpc = MI->getOpcode(); 02093 switch (MIOpc) { 02094 case X86::SHUFPSrri: { 02095 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); 02096 if (!Subtarget.hasSSE2()) return nullptr; 02097 02098 unsigned B = MI->getOperand(1).getReg(); 02099 unsigned C = MI->getOperand(2).getReg(); 02100 if (B != C) return nullptr; 02101 unsigned M = MI->getOperand(3).getImm(); 02102 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) 02103 .addOperand(Dest).addOperand(Src).addImm(M); 02104 break; 02105 } 02106 case X86::SHUFPDrri: { 02107 assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!"); 02108 if (!Subtarget.hasSSE2()) return nullptr; 02109 02110 unsigned B = MI->getOperand(1).getReg(); 02111 unsigned C = MI->getOperand(2).getReg(); 02112 if (B != C) return nullptr; 02113 unsigned M = MI->getOperand(3).getImm(); 02114 02115 // Convert to PSHUFD mask. 02116 M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44; 02117 02118 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) 02119 .addOperand(Dest).addOperand(Src).addImm(M); 02120 break; 02121 } 02122 case X86::SHL64ri: { 02123 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 02124 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 02125 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 02126 02127 // LEA can't handle RSP. 02128 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && 02129 !MF.getRegInfo().constrainRegClass(Src.getReg(), 02130 &X86::GR64_NOSPRegClass)) 02131 return nullptr; 02132 02133 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 02134 .addOperand(Dest) 02135 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); 02136 break; 02137 } 02138 case X86::SHL32ri: { 02139 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 02140 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 02141 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 02142 02143 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 02144 02145 // LEA can't handle ESP. 02146 bool isKill, isUndef; 02147 unsigned SrcReg; 02148 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 02149 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, 02150 SrcReg, isKill, isUndef, ImplicitOp)) 02151 return nullptr; 02152 02153 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 02154 .addOperand(Dest) 02155 .addReg(0).addImm(1 << ShAmt) 02156 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) 02157 .addImm(0).addReg(0); 02158 if (ImplicitOp.getReg() != 0) 02159 MIB.addOperand(ImplicitOp); 02160 NewMI = MIB; 02161 02162 break; 02163 } 02164 case X86::SHL16ri: { 02165 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 02166 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 02167 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 02168 02169 if (DisableLEA16) 02170 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr; 02171 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 02172 .addOperand(Dest) 02173 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); 02174 break; 02175 } 02176 default: { 02177 02178 switch (MIOpc) { 02179 default: return nullptr; 02180 case X86::INC64r: 02181 case X86::INC32r: 02182 case X86::INC64_32r: { 02183 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 02184 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r 02185 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 02186 bool isKill, isUndef; 02187 unsigned SrcReg; 02188 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 02189 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, 02190 SrcReg, isKill, isUndef, ImplicitOp)) 02191 return nullptr; 02192 02193 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 02194 .addOperand(Dest) 02195 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)); 02196 if (ImplicitOp.getReg() != 0) 02197 MIB.addOperand(ImplicitOp); 02198 02199 NewMI = addOffset(MIB, 1); 02200 break; 02201 } 02202 case X86::INC16r: 02203 case X86::INC64_16r: 02204 if (DisableLEA16) 02205 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) 02206 : nullptr; 02207 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 02208 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 02209 .addOperand(Dest).addOperand(Src), 1); 02210 break; 02211 case X86::DEC64r: 02212 case X86::DEC32r: 02213 case X86::DEC64_32r: { 02214 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 02215 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 02216 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 02217 02218 bool isKill, isUndef; 02219 unsigned SrcReg; 02220 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 02221 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, 02222 SrcReg, isKill, isUndef, ImplicitOp)) 02223 return nullptr; 02224 02225 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 02226 .addOperand(Dest) 02227 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); 02228 if (ImplicitOp.getReg() != 0) 02229 MIB.addOperand(ImplicitOp); 02230 02231 NewMI = addOffset(MIB, -1); 02232 02233 break; 02234 } 02235 case X86::DEC16r: 02236 case X86::DEC64_16r: 02237 if (DisableLEA16) 02238 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) 02239 : nullptr; 02240 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 02241 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 02242 .addOperand(Dest).addOperand(Src), -1); 02243 break; 02244 case X86::ADD64rr: 02245 case X86::ADD64rr_DB: 02246 case X86::ADD32rr: 02247 case X86::ADD32rr_DB: { 02248 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 02249 unsigned Opc; 02250 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) 02251 Opc = X86::LEA64r; 02252 else 02253 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 02254 02255 bool isKill, isUndef; 02256 unsigned SrcReg; 02257 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 02258 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 02259 SrcReg, isKill, isUndef, ImplicitOp)) 02260 return nullptr; 02261 02262 const MachineOperand &Src2 = MI->getOperand(2); 02263 bool isKill2, isUndef2; 02264 unsigned SrcReg2; 02265 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); 02266 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, 02267 SrcReg2, isKill2, isUndef2, ImplicitOp2)) 02268 return nullptr; 02269 02270 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 02271 .addOperand(Dest); 02272 if (ImplicitOp.getReg() != 0) 02273 MIB.addOperand(ImplicitOp); 02274 if (ImplicitOp2.getReg() != 0) 02275 MIB.addOperand(ImplicitOp2); 02276 02277 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); 02278 02279 // Preserve undefness of the operands. 02280 NewMI->getOperand(1).setIsUndef(isUndef); 02281 NewMI->getOperand(3).setIsUndef(isUndef2); 02282 02283 if (LV && Src2.isKill()) 02284 LV->replaceKillInstruction(SrcReg2, MI, NewMI); 02285 break; 02286 } 02287 case X86::ADD16rr: 02288 case X86::ADD16rr_DB: { 02289 if (DisableLEA16) 02290 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) 02291 : nullptr; 02292 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 02293 unsigned Src2 = MI->getOperand(2).getReg(); 02294 bool isKill2 = MI->getOperand(2).isKill(); 02295 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 02296 .addOperand(Dest), 02297 Src.getReg(), Src.isKill(), Src2, isKill2); 02298 02299 // Preserve undefness of the operands. 02300 bool isUndef = MI->getOperand(1).isUndef(); 02301 bool isUndef2 = MI->getOperand(2).isUndef(); 02302 NewMI->getOperand(1).setIsUndef(isUndef); 02303 NewMI->getOperand(3).setIsUndef(isUndef2); 02304 02305 if (LV && isKill2) 02306 LV->replaceKillInstruction(Src2, MI, NewMI); 02307 break; 02308 } 02309 case X86::ADD64ri32: 02310 case X86::ADD64ri8: 02311 case X86::ADD64ri32_DB: 02312 case X86::ADD64ri8_DB: 02313 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 02314 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 02315 .addOperand(Dest).addOperand(Src), 02316 MI->getOperand(2).getImm()); 02317 break; 02318 case X86::ADD32ri: 02319 case X86::ADD32ri8: 02320 case X86::ADD32ri_DB: 02321 case X86::ADD32ri8_DB: { 02322 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 02323 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 02324 02325 bool isKill, isUndef; 02326 unsigned SrcReg; 02327 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 02328 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 02329 SrcReg, isKill, isUndef, ImplicitOp)) 02330 return nullptr; 02331 02332 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 02333 .addOperand(Dest) 02334 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); 02335 if (ImplicitOp.getReg() != 0) 02336 MIB.addOperand(ImplicitOp); 02337 02338 NewMI = addOffset(MIB, MI->getOperand(2).getImm()); 02339 break; 02340 } 02341 case X86::ADD16ri: 02342 case X86::ADD16ri8: 02343 case X86::ADD16ri_DB: 02344 case X86::ADD16ri8_DB: 02345 if (DisableLEA16) 02346 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) 02347 : nullptr; 02348 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 02349 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 02350 .addOperand(Dest).addOperand(Src), 02351 MI->getOperand(2).getImm()); 02352 break; 02353 } 02354 } 02355 } 02356 02357 if (!NewMI) return nullptr; 02358 02359 if (LV) { // Update live variables 02360 if (Src.isKill()) 02361 LV->replaceKillInstruction(Src.getReg(), MI, NewMI); 02362 if (Dest.isDead()) 02363 LV->replaceKillInstruction(Dest.getReg(), MI, NewMI); 02364 } 02365 02366 MFI->insert(MBBI, NewMI); // Insert the new inst 02367 return NewMI; 02368 } 02369 02370 /// commuteInstruction - We have a few instructions that must be hacked on to 02371 /// commute them. 02372 /// 02373 MachineInstr * 02374 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 02375 switch (MI->getOpcode()) { 02376 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 02377 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 02378 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 02379 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 02380 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 02381 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 02382 unsigned Opc; 02383 unsigned Size; 02384 switch (MI->getOpcode()) { 02385 default: llvm_unreachable("Unreachable!"); 02386 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 02387 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 02388 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 02389 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 02390 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 02391 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 02392 } 02393 unsigned Amt = MI->getOperand(3).getImm(); 02394 if (NewMI) { 02395 MachineFunction &MF = *MI->getParent()->getParent(); 02396 MI = MF.CloneMachineInstr(MI); 02397 NewMI = false; 02398 } 02399 MI->setDesc(get(Opc)); 02400 MI->getOperand(3).setImm(Size-Amt); 02401 return TargetInstrInfo::commuteInstruction(MI, NewMI); 02402 } 02403 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: 02404 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: 02405 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: 02406 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: 02407 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: 02408 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr: 02409 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: 02410 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: 02411 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: 02412 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: 02413 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: 02414 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: 02415 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: 02416 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: 02417 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: 02418 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { 02419 unsigned Opc; 02420 switch (MI->getOpcode()) { 02421 default: llvm_unreachable("Unreachable!"); 02422 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; 02423 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; 02424 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; 02425 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; 02426 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; 02427 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; 02428 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; 02429 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; 02430 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; 02431 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; 02432 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; 02433 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; 02434 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; 02435 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; 02436 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; 02437 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; 02438 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; 02439 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; 02440 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; 02441 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; 02442 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; 02443 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; 02444 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; 02445 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; 02446 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; 02447 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; 02448 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; 02449 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; 02450 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; 02451 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; 02452 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; 02453 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; 02454 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; 02455 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; 02456 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; 02457 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; 02458 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; 02459 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; 02460 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; 02461 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; 02462 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; 02463 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; 02464 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; 02465 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; 02466 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; 02467 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; 02468 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; 02469 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; 02470 } 02471 if (NewMI) { 02472 MachineFunction &MF = *MI->getParent()->getParent(); 02473 MI = MF.CloneMachineInstr(MI); 02474 NewMI = false; 02475 } 02476 MI->setDesc(get(Opc)); 02477 // Fallthrough intended. 02478 } 02479 default: 02480 return TargetInstrInfo::commuteInstruction(MI, NewMI); 02481 } 02482 } 02483 02484 bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 02485 unsigned &SrcOpIdx2) const { 02486 switch (MI->getOpcode()) { 02487 case X86::VFMADDPDr231r: 02488 case X86::VFMADDPSr231r: 02489 case X86::VFMADDSDr231r: 02490 case X86::VFMADDSSr231r: 02491 case X86::VFMSUBPDr231r: 02492 case X86::VFMSUBPSr231r: 02493 case X86::VFMSUBSDr231r: 02494 case X86::VFMSUBSSr231r: 02495 case X86::VFNMADDPDr231r: 02496 case X86::VFNMADDPSr231r: 02497 case X86::VFNMADDSDr231r: 02498 case X86::VFNMADDSSr231r: 02499 case X86::VFNMSUBPDr231r: 02500 case X86::VFNMSUBPSr231r: 02501 case X86::VFNMSUBSDr231r: 02502 case X86::VFNMSUBSSr231r: 02503 case X86::VFMADDPDr231rY: 02504 case X86::VFMADDPSr231rY: 02505 case X86::VFMSUBPDr231rY: 02506 case X86::VFMSUBPSr231rY: 02507 case X86::VFNMADDPDr231rY: 02508 case X86::VFNMADDPSr231rY: 02509 case X86::VFNMSUBPDr231rY: 02510 case X86::VFNMSUBPSr231rY: 02511 SrcOpIdx1 = 2; 02512 SrcOpIdx2 = 3; 02513 return true; 02514 default: 02515 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 02516 } 02517 } 02518 02519 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) { 02520 switch (BrOpc) { 02521 default: return X86::COND_INVALID; 02522 case X86::JE_4: return X86::COND_E; 02523 case X86::JNE_4: return X86::COND_NE; 02524 case X86::JL_4: return X86::COND_L; 02525 case X86::JLE_4: return X86::COND_LE; 02526 case X86::JG_4: return X86::COND_G; 02527 case X86::JGE_4: return X86::COND_GE; 02528 case X86::JB_4: return X86::COND_B; 02529 case X86::JBE_4: return X86::COND_BE; 02530 case X86::JA_4: return X86::COND_A; 02531 case X86::JAE_4: return X86::COND_AE; 02532 case X86::JS_4: return X86::COND_S; 02533 case X86::JNS_4: return X86::COND_NS; 02534 case X86::JP_4: return X86::COND_P; 02535 case X86::JNP_4: return X86::COND_NP; 02536 case X86::JO_4: return X86::COND_O; 02537 case X86::JNO_4: return X86::COND_NO; 02538 } 02539 } 02540 02541 /// getCondFromSETOpc - return condition code of a SET opcode. 02542 static X86::CondCode getCondFromSETOpc(unsigned Opc) { 02543 switch (Opc) { 02544 default: return X86::COND_INVALID; 02545 case X86::SETAr: case X86::SETAm: return X86::COND_A; 02546 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; 02547 case X86::SETBr: case X86::SETBm: return X86::COND_B; 02548 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; 02549 case X86::SETEr: case X86::SETEm: return X86::COND_E; 02550 case X86::SETGr: case X86::SETGm: return X86::COND_G; 02551 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; 02552 case X86::SETLr: case X86::SETLm: return X86::COND_L; 02553 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; 02554 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; 02555 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; 02556 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; 02557 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; 02558 case X86::SETOr: case X86::SETOm: return X86::COND_O; 02559 case X86::SETPr: case X86::SETPm: return X86::COND_P; 02560 case X86::SETSr: case X86::SETSm: return X86::COND_S; 02561 } 02562 } 02563 02564 /// getCondFromCmovOpc - return condition code of a CMov opcode. 02565 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { 02566 switch (Opc) { 02567 default: return X86::COND_INVALID; 02568 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm: 02569 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr: 02570 return X86::COND_A; 02571 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: 02572 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: 02573 return X86::COND_AE; 02574 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm: 02575 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr: 02576 return X86::COND_B; 02577 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: 02578 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: 02579 return X86::COND_BE; 02580 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm: 02581 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr: 02582 return X86::COND_E; 02583 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm: 02584 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr: 02585 return X86::COND_G; 02586 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: 02587 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: 02588 return X86::COND_GE; 02589 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm: 02590 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr: 02591 return X86::COND_L; 02592 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: 02593 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: 02594 return X86::COND_LE; 02595 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: 02596 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: 02597 return X86::COND_NE; 02598 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: 02599 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: 02600 return X86::COND_NO; 02601 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: 02602 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: 02603 return X86::COND_NP; 02604 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: 02605 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: 02606 return X86::COND_NS; 02607 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm: 02608 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr: 02609 return X86::COND_O; 02610 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm: 02611 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr: 02612 return X86::COND_P; 02613 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm: 02614 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr: 02615 return X86::COND_S; 02616 } 02617 } 02618 02619 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { 02620 switch (CC) { 02621 default: llvm_unreachable("Illegal condition code!"); 02622 case X86::COND_E: return X86::JE_4; 02623 case X86::COND_NE: return X86::JNE_4; 02624 case X86::COND_L: return X86::JL_4; 02625 case X86::COND_LE: return X86::JLE_4; 02626 case X86::COND_G: return X86::JG_4; 02627 case X86::COND_GE: return X86::JGE_4; 02628 case X86::COND_B: return X86::JB_4; 02629 case X86::COND_BE: return X86::JBE_4; 02630 case X86::COND_A: return X86::JA_4; 02631 case X86::COND_AE: return X86::JAE_4; 02632 case X86::COND_S: return X86::JS_4; 02633 case X86::COND_NS: return X86::JNS_4; 02634 case X86::COND_P: return X86::JP_4; 02635 case X86::COND_NP: return X86::JNP_4; 02636 case X86::COND_O: return X86::JO_4; 02637 case X86::COND_NO: return X86::JNO_4; 02638 } 02639 } 02640 02641 /// GetOppositeBranchCondition - Return the inverse of the specified condition, 02642 /// e.g. turning COND_E to COND_NE. 02643 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 02644 switch (CC) { 02645 default: llvm_unreachable("Illegal condition code!"); 02646 case X86::COND_E: return X86::COND_NE; 02647 case X86::COND_NE: return X86::COND_E; 02648 case X86::COND_L: return X86::COND_GE; 02649 case X86::COND_LE: return X86::COND_G; 02650 case X86::COND_G: return X86::COND_LE; 02651 case X86::COND_GE: return X86::COND_L; 02652 case X86::COND_B: return X86::COND_AE; 02653 case X86::COND_BE: return X86::COND_A; 02654 case X86::COND_A: return X86::COND_BE; 02655 case X86::COND_AE: return X86::COND_B; 02656 case X86::COND_S: return X86::COND_NS; 02657 case X86::COND_NS: return X86::COND_S; 02658 case X86::COND_P: return X86::COND_NP; 02659 case X86::COND_NP: return X86::COND_P; 02660 case X86::COND_O: return X86::COND_NO; 02661 case X86::COND_NO: return X86::COND_O; 02662 } 02663 } 02664 02665 /// getSwappedCondition - assume the flags are set by MI(a,b), return 02666 /// the condition code if we modify the instructions such that flags are 02667 /// set by MI(b,a). 02668 static X86::CondCode getSwappedCondition(X86::CondCode CC) { 02669 switch (CC) { 02670 default: return X86::COND_INVALID; 02671 case X86::COND_E: return X86::COND_E; 02672 case X86::COND_NE: return X86::COND_NE; 02673 case X86::COND_L: return X86::COND_G; 02674 case X86::COND_LE: return X86::COND_GE; 02675 case X86::COND_G: return X86::COND_L; 02676 case X86::COND_GE: return X86::COND_LE; 02677 case X86::COND_B: return X86::COND_A; 02678 case X86::COND_BE: return X86::COND_AE; 02679 case X86::COND_A: return X86::COND_B; 02680 case X86::COND_AE: return X86::COND_BE; 02681 } 02682 } 02683 02684 /// getSETFromCond - Return a set opcode for the given condition and 02685 /// whether it has memory operand. 02686 unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { 02687 static const uint16_t Opc[16][2] = { 02688 { X86::SETAr, X86::SETAm }, 02689 { X86::SETAEr, X86::SETAEm }, 02690 { X86::SETBr, X86::SETBm }, 02691 { X86::SETBEr, X86::SETBEm }, 02692 { X86::SETEr, X86::SETEm }, 02693 { X86::SETGr, X86::SETGm }, 02694 { X86::SETGEr, X86::SETGEm }, 02695 { X86::SETLr, X86::SETLm }, 02696 { X86::SETLEr, X86::SETLEm }, 02697 { X86::SETNEr, X86::SETNEm }, 02698 { X86::SETNOr, X86::SETNOm }, 02699 { X86::SETNPr, X86::SETNPm }, 02700 { X86::SETNSr, X86::SETNSm }, 02701 { X86::SETOr, X86::SETOm }, 02702 { X86::SETPr, X86::SETPm }, 02703 { X86::SETSr, X86::SETSm } 02704 }; 02705 02706 assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes"); 02707 return Opc[CC][HasMemoryOperand ? 1 : 0]; 02708 } 02709 02710 /// getCMovFromCond - Return a cmov opcode for the given condition, 02711 /// register size in bytes, and operand type. 02712 unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes, 02713 bool HasMemoryOperand) { 02714 static const uint16_t Opc[32][3] = { 02715 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr }, 02716 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, 02717 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr }, 02718 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, 02719 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr }, 02720 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr }, 02721 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, 02722 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr }, 02723 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, 02724 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, 02725 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, 02726 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, 02727 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, 02728 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr }, 02729 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr }, 02730 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr }, 02731 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm }, 02732 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, 02733 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm }, 02734 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, 02735 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm }, 02736 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm }, 02737 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, 02738 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm }, 02739 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, 02740 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, 02741 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, 02742 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, 02743 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, 02744 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm }, 02745 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm }, 02746 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm } 02747 }; 02748 02749 assert(CC < 16 && "Can only handle standard cond codes"); 02750 unsigned Idx = HasMemoryOperand ? 16+CC : CC; 02751 switch(RegBytes) { 02752 default: llvm_unreachable("Illegal register size!"); 02753 case 2: return Opc[Idx][0]; 02754 case 4: return Opc[Idx][1]; 02755 case 8: return Opc[Idx][2]; 02756 } 02757 } 02758 02759 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 02760 if (!MI->isTerminator()) return false; 02761 02762 // Conditional branch is a special case. 02763 if (MI->isBranch() && !MI->isBarrier()) 02764 return true; 02765 if (!MI->isPredicable()) 02766 return true; 02767 return !isPredicated(MI); 02768 } 02769 02770 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 02771 MachineBasicBlock *&TBB, 02772 MachineBasicBlock *&FBB, 02773 SmallVectorImpl<MachineOperand> &Cond, 02774 bool AllowModify) const { 02775 // Start from the bottom of the block and work up, examining the 02776 // terminator instructions. 02777 MachineBasicBlock::iterator I = MBB.end(); 02778 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 02779 while (I != MBB.begin()) { 02780 --I; 02781 if (I->isDebugValue()) 02782 continue; 02783 02784 // Working from the bottom, when we see a non-terminator instruction, we're 02785 // done. 02786 if (!isUnpredicatedTerminator(I)) 02787 break; 02788 02789 // A terminator that isn't a branch can't easily be handled by this 02790 // analysis. 02791 if (!I->isBranch()) 02792 return true; 02793 02794 // Handle unconditional branches. 02795 if (I->getOpcode() == X86::JMP_4) { 02796 UnCondBrIter = I; 02797 02798 if (!AllowModify) { 02799 TBB = I->getOperand(0).getMBB(); 02800 continue; 02801 } 02802 02803 // If the block has any instructions after a JMP, delete them. 02804 while (std::next(I) != MBB.end()) 02805 std::next(I)->eraseFromParent(); 02806 02807 Cond.clear(); 02808 FBB = nullptr; 02809 02810 // Delete the JMP if it's equivalent to a fall-through. 02811 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 02812 TBB = nullptr; 02813 I->eraseFromParent(); 02814 I = MBB.end(); 02815 UnCondBrIter = MBB.end(); 02816 continue; 02817 } 02818 02819 // TBB is used to indicate the unconditional destination. 02820 TBB = I->getOperand(0).getMBB(); 02821 continue; 02822 } 02823 02824 // Handle conditional branches. 02825 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode()); 02826 if (BranchCode == X86::COND_INVALID) 02827 return true; // Can't handle indirect branch. 02828 02829 // Working from the bottom, handle the first conditional branch. 02830 if (Cond.empty()) { 02831 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); 02832 if (AllowModify && UnCondBrIter != MBB.end() && 02833 MBB.isLayoutSuccessor(TargetBB)) { 02834 // If we can modify the code and it ends in something like: 02835 // 02836 // jCC L1 02837 // jmp L2 02838 // L1: 02839 // ... 02840 // L2: 02841 // 02842 // Then we can change this to: 02843 // 02844 // jnCC L2 02845 // L1: 02846 // ... 02847 // L2: 02848 // 02849 // Which is a bit more efficient. 02850 // We conditionally jump to the fall-through block. 02851 BranchCode = GetOppositeBranchCondition(BranchCode); 02852 unsigned JNCC = GetCondBranchFromCond(BranchCode); 02853 MachineBasicBlock::iterator OldInst = I; 02854 02855 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) 02856 .addMBB(UnCondBrIter->getOperand(0).getMBB()); 02857 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) 02858 .addMBB(TargetBB); 02859 02860 OldInst->eraseFromParent(); 02861 UnCondBrIter->eraseFromParent(); 02862 02863 // Restart the analysis. 02864 UnCondBrIter = MBB.end(); 02865 I = MBB.end(); 02866 continue; 02867 } 02868 02869 FBB = TBB; 02870 TBB = I->getOperand(0).getMBB(); 02871 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 02872 continue; 02873 } 02874 02875 // Handle subsequent conditional branches. Only handle the case where all 02876 // conditional branches branch to the same destination and their condition 02877 // opcodes fit one of the special multi-branch idioms. 02878 assert(Cond.size() == 1); 02879 assert(TBB); 02880 02881 // Only handle the case where all conditional branches branch to the same 02882 // destination. 02883 if (TBB != I->getOperand(0).getMBB()) 02884 return true; 02885 02886 // If the conditions are the same, we can leave them alone. 02887 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 02888 if (OldBranchCode == BranchCode) 02889 continue; 02890 02891 // If they differ, see if they fit one of the known patterns. Theoretically, 02892 // we could handle more patterns here, but we shouldn't expect to see them 02893 // if instruction selection has done a reasonable job. 02894 if ((OldBranchCode == X86::COND_NP && 02895 BranchCode == X86::COND_E) || 02896 (OldBranchCode == X86::COND_E && 02897 BranchCode == X86::COND_NP)) 02898 BranchCode = X86::COND_NP_OR_E; 02899 else if ((OldBranchCode == X86::COND_P && 02900 BranchCode == X86::COND_NE) || 02901 (OldBranchCode == X86::COND_NE && 02902 BranchCode == X86::COND_P)) 02903 BranchCode = X86::COND_NE_OR_P; 02904 else 02905 return true; 02906 02907 // Update the MachineOperand. 02908 Cond[0].setImm(BranchCode); 02909 } 02910 02911 return false; 02912 } 02913 02914 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 02915 MachineBasicBlock::iterator I = MBB.end(); 02916 unsigned Count = 0; 02917 02918 while (I != MBB.begin()) { 02919 --I; 02920 if (I->isDebugValue()) 02921 continue; 02922 if (I->getOpcode() != X86::JMP_4 && 02923 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) 02924 break; 02925 // Remove the branch. 02926 I->eraseFromParent(); 02927 I = MBB.end(); 02928 ++Count; 02929 } 02930 02931 return Count; 02932 } 02933 02934 unsigned 02935 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 02936 MachineBasicBlock *FBB, 02937 const SmallVectorImpl<MachineOperand> &Cond, 02938 DebugLoc DL) const { 02939 // Shouldn't be a fall through. 02940 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 02941 assert((Cond.size() == 1 || Cond.size() == 0) && 02942 "X86 branch conditions have one component!"); 02943 02944 if (Cond.empty()) { 02945 // Unconditional branch? 02946 assert(!FBB && "Unconditional branch with multiple successors!"); 02947 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); 02948 return 1; 02949 } 02950 02951 // Conditional branch. 02952 unsigned Count = 0; 02953 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 02954 switch (CC) { 02955 case X86::COND_NP_OR_E: 02956 // Synthesize NP_OR_E with two branches. 02957 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); 02958 ++Count; 02959 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); 02960 ++Count; 02961 break; 02962 case X86::COND_NE_OR_P: 02963 // Synthesize NE_OR_P with two branches. 02964 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); 02965 ++Count; 02966 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); 02967 ++Count; 02968 break; 02969 default: { 02970 unsigned Opc = GetCondBranchFromCond(CC); 02971 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); 02972 ++Count; 02973 } 02974 } 02975 if (FBB) { 02976 // Two-way Conditional branch. Insert the second branch. 02977 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); 02978 ++Count; 02979 } 02980 return Count; 02981 } 02982 02983 bool X86InstrInfo:: 02984 canInsertSelect(const MachineBasicBlock &MBB, 02985 const SmallVectorImpl<MachineOperand> &Cond, 02986 unsigned TrueReg, unsigned FalseReg, 02987 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 02988 // Not all subtargets have cmov instructions. 02989 if (!Subtarget.hasCMov()) 02990 return false; 02991 if (Cond.size() != 1) 02992 return false; 02993 // We cannot do the composite conditions, at least not in SSA form. 02994 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) 02995 return false; 02996 02997 // Check register classes. 02998 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 02999 const TargetRegisterClass *RC = 03000 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 03001 if (!RC) 03002 return false; 03003 03004 // We have cmov instructions for 16, 32, and 64 bit general purpose registers. 03005 if (X86::GR16RegClass.hasSubClassEq(RC) || 03006 X86::GR32RegClass.hasSubClassEq(RC) || 03007 X86::GR64RegClass.hasSubClassEq(RC)) { 03008 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy 03009 // Bridge. Probably Ivy Bridge as well. 03010 CondCycles = 2; 03011 TrueCycles = 2; 03012 FalseCycles = 2; 03013 return true; 03014 } 03015 03016 // Can't do vectors. 03017 return false; 03018 } 03019 03020 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, 03021 MachineBasicBlock::iterator I, DebugLoc DL, 03022 unsigned DstReg, 03023 const SmallVectorImpl<MachineOperand> &Cond, 03024 unsigned TrueReg, unsigned FalseReg) const { 03025 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 03026 assert(Cond.size() == 1 && "Invalid Cond array"); 03027 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), 03028 MRI.getRegClass(DstReg)->getSize(), 03029 false/*HasMemoryOperand*/); 03030 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); 03031 } 03032 03033 /// isHReg - Test if the given register is a physical h register. 03034 static bool isHReg(unsigned Reg) { 03035 return X86::GR8_ABCD_HRegClass.contains(Reg); 03036 } 03037 03038 // Try and copy between VR128/VR64 and GR64 registers. 03039 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 03040 const X86Subtarget &Subtarget) { 03041 03042 // SrcReg(VR128) -> DestReg(GR64) 03043 // SrcReg(VR64) -> DestReg(GR64) 03044 // SrcReg(GR64) -> DestReg(VR128) 03045 // SrcReg(GR64) -> DestReg(VR64) 03046 03047 bool HasAVX = Subtarget.hasAVX(); 03048 bool HasAVX512 = Subtarget.hasAVX512(); 03049 if (X86::GR64RegClass.contains(DestReg)) { 03050 if (X86::VR128XRegClass.contains(SrcReg)) 03051 // Copy from a VR128 register to a GR64 register. 03052 return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr : 03053 X86::MOVPQIto64rr); 03054 if (X86::VR64RegClass.contains(SrcReg)) 03055 // Copy from a VR64 register to a GR64 register. 03056 return X86::MOVSDto64rr; 03057 } else if (X86::GR64RegClass.contains(SrcReg)) { 03058 // Copy from a GR64 register to a VR128 register. 03059 if (X86::VR128XRegClass.contains(DestReg)) 03060 return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr : 03061 X86::MOV64toPQIrr); 03062 // Copy from a GR64 register to a VR64 register. 03063 if (X86::VR64RegClass.contains(DestReg)) 03064 return X86::MOV64toSDrr; 03065 } 03066 03067 // SrcReg(FR32) -> DestReg(GR32) 03068 // SrcReg(GR32) -> DestReg(FR32) 03069 03070 if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg)) 03071 // Copy from a FR32 register to a GR32 register. 03072 return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr); 03073 03074 if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) 03075 // Copy from a GR32 register to a FR32 register. 03076 return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr); 03077 return 0; 03078 } 03079 03080 inline static bool MaskRegClassContains(unsigned Reg) { 03081 return X86::VK8RegClass.contains(Reg) || 03082 X86::VK16RegClass.contains(Reg) || 03083 X86::VK32RegClass.contains(Reg) || 03084 X86::VK64RegClass.contains(Reg) || 03085 X86::VK1RegClass.contains(Reg); 03086 } 03087 static 03088 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) { 03089 if (X86::VR128XRegClass.contains(DestReg, SrcReg) || 03090 X86::VR256XRegClass.contains(DestReg, SrcReg) || 03091 X86::VR512RegClass.contains(DestReg, SrcReg)) { 03092 DestReg = get512BitSuperRegister(DestReg); 03093 SrcReg = get512BitSuperRegister(SrcReg); 03094 return X86::VMOVAPSZrr; 03095 } 03096 if (MaskRegClassContains(DestReg) && 03097 MaskRegClassContains(SrcReg)) 03098 return X86::KMOVWkk; 03099 if (MaskRegClassContains(DestReg) && 03100 (X86::GR32RegClass.contains(SrcReg) || 03101 X86::GR16RegClass.contains(SrcReg) || 03102 X86::GR8RegClass.contains(SrcReg))) { 03103 SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32); 03104 return X86::KMOVWkr; 03105 } 03106 if ((X86::GR32RegClass.contains(DestReg) || 03107 X86::GR16RegClass.contains(DestReg) || 03108 X86::GR8RegClass.contains(DestReg)) && 03109 MaskRegClassContains(SrcReg)) { 03110 DestReg = getX86SubSuperRegister(DestReg, MVT::i32); 03111 return X86::KMOVWrk; 03112 } 03113 return 0; 03114 } 03115 03116 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 03117 MachineBasicBlock::iterator MI, DebugLoc DL, 03118 unsigned DestReg, unsigned SrcReg, 03119 bool KillSrc) const { 03120 // First deal with the normal symmetric copies. 03121 bool HasAVX = Subtarget.hasAVX(); 03122 bool HasAVX512 = Subtarget.hasAVX512(); 03123 unsigned Opc = 0; 03124 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 03125 Opc = X86::MOV64rr; 03126 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 03127 Opc = X86::MOV32rr; 03128 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 03129 Opc = X86::MOV16rr; 03130 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 03131 // Copying to or from a physical H register on x86-64 requires a NOREX 03132 // move. Otherwise use a normal move. 03133 if ((isHReg(DestReg) || isHReg(SrcReg)) && 03134 Subtarget.is64Bit()) { 03135 Opc = X86::MOV8rr_NOREX; 03136 // Both operands must be encodable without an REX prefix. 03137 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 03138 "8-bit H register can not be copied outside GR8_NOREX"); 03139 } else 03140 Opc = X86::MOV8rr; 03141 } 03142 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 03143 Opc = X86::MMX_MOVQ64rr; 03144 else if (HasAVX512) 03145 Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg); 03146 else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 03147 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 03148 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 03149 Opc = X86::VMOVAPSYrr; 03150 if (!Opc) 03151 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); 03152 03153 if (Opc) { 03154 BuildMI(MBB, MI, DL, get(Opc), DestReg) 03155 .addReg(SrcReg, getKillRegState(KillSrc)); 03156 return; 03157 } 03158 03159 // Moving EFLAGS to / from another register requires a push and a pop. 03160 // Notice that we have to adjust the stack if we don't want to clobber the 03161 // first frame index. See X86FrameLowering.cpp - clobbersTheStack. 03162 if (SrcReg == X86::EFLAGS) { 03163 if (X86::GR64RegClass.contains(DestReg)) { 03164 BuildMI(MBB, MI, DL, get(X86::PUSHF64)); 03165 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); 03166 return; 03167 } 03168 if (X86::GR32RegClass.contains(DestReg)) { 03169 BuildMI(MBB, MI, DL, get(X86::PUSHF32)); 03170 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); 03171 return; 03172 } 03173 } 03174 if (DestReg == X86::EFLAGS) { 03175 if (X86::GR64RegClass.contains(SrcReg)) { 03176 BuildMI(MBB, MI, DL, get(X86::PUSH64r)) 03177 .addReg(SrcReg, getKillRegState(KillSrc)); 03178 BuildMI(MBB, MI, DL, get(X86::POPF64)); 03179 return; 03180 } 03181 if (X86::GR32RegClass.contains(SrcReg)) { 03182 BuildMI(MBB, MI, DL, get(X86::PUSH32r)) 03183 .addReg(SrcReg, getKillRegState(KillSrc)); 03184 BuildMI(MBB, MI, DL, get(X86::POPF32)); 03185 return; 03186 } 03187 } 03188 03189 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) 03190 << " to " << RI.getName(DestReg) << '\n'); 03191 llvm_unreachable("Cannot emit physreg copy instruction"); 03192 } 03193 03194 static unsigned getLoadStoreRegOpcode(unsigned Reg, 03195 const TargetRegisterClass *RC, 03196 bool isStackAligned, 03197 const X86Subtarget &STI, 03198 bool load) { 03199 if (STI.hasAVX512()) { 03200 if (X86::VK8RegClass.hasSubClassEq(RC) || 03201 X86::VK16RegClass.hasSubClassEq(RC)) 03202 return load ? X86::KMOVWkm : X86::KMOVWmk; 03203 if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC)) 03204 return load ? X86::VMOVSSZrm : X86::VMOVSSZmr; 03205 if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC)) 03206 return load ? X86::VMOVSDZrm : X86::VMOVSDZmr; 03207 if (X86::VR512RegClass.hasSubClassEq(RC)) 03208 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 03209 } 03210 03211 bool HasAVX = STI.hasAVX(); 03212 switch (RC->getSize()) { 03213 default: 03214 llvm_unreachable("Unknown spill size"); 03215 case 1: 03216 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 03217 if (STI.is64Bit()) 03218 // Copying to or from a physical H register on x86-64 requires a NOREX 03219 // move. Otherwise use a normal move. 03220 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 03221 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 03222 return load ? X86::MOV8rm : X86::MOV8mr; 03223 case 2: 03224 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 03225 return load ? X86::MOV16rm : X86::MOV16mr; 03226 case 4: 03227 if (X86::GR32RegClass.hasSubClassEq(RC)) 03228 return load ? X86::MOV32rm : X86::MOV32mr; 03229 if (X86::FR32RegClass.hasSubClassEq(RC)) 03230 return load ? 03231 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : 03232 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); 03233 if (X86::RFP32RegClass.hasSubClassEq(RC)) 03234 return load ? X86::LD_Fp32m : X86::ST_Fp32m; 03235 llvm_unreachable("Unknown 4-byte regclass"); 03236 case 8: 03237 if (X86::GR64RegClass.hasSubClassEq(RC)) 03238 return load ? X86::MOV64rm : X86::MOV64mr; 03239 if (X86::FR64RegClass.hasSubClassEq(RC)) 03240 return load ? 03241 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : 03242 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); 03243 if (X86::VR64RegClass.hasSubClassEq(RC)) 03244 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 03245 if (X86::RFP64RegClass.hasSubClassEq(RC)) 03246 return load ? X86::LD_Fp64m : X86::ST_Fp64m; 03247 llvm_unreachable("Unknown 8-byte regclass"); 03248 case 10: 03249 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 03250 return load ? X86::LD_Fp80m : X86::ST_FpP80m; 03251 case 16: { 03252 assert((X86::VR128RegClass.hasSubClassEq(RC) || 03253 X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass"); 03254 // If stack is realigned we can use aligned stores. 03255 if (isStackAligned) 03256 return load ? 03257 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : 03258 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); 03259 else 03260 return load ? 03261 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : 03262 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); 03263 } 03264 case 32: 03265 assert((X86::VR256RegClass.hasSubClassEq(RC) || 03266 X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass"); 03267 // If stack is realigned we can use aligned stores. 03268 if (isStackAligned) 03269 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; 03270 else 03271 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; 03272 case 64: 03273 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); 03274 if (isStackAligned) 03275 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; 03276 else 03277 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 03278 } 03279 } 03280 03281 static unsigned getStoreRegOpcode(unsigned SrcReg, 03282 const TargetRegisterClass *RC, 03283 bool isStackAligned, 03284 const X86Subtarget &STI) { 03285 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); 03286 } 03287 03288 03289 static unsigned getLoadRegOpcode(unsigned DestReg, 03290 const TargetRegisterClass *RC, 03291 bool isStackAligned, 03292 const X86Subtarget &STI) { 03293 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); 03294 } 03295 03296 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 03297 MachineBasicBlock::iterator MI, 03298 unsigned SrcReg, bool isKill, int FrameIdx, 03299 const TargetRegisterClass *RC, 03300 const TargetRegisterInfo *TRI) const { 03301 const MachineFunction &MF = *MBB.getParent(); 03302 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && 03303 "Stack slot too small for store"); 03304 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); 03305 bool isAligned = (MF.getTarget() 03306 .getSubtargetImpl() 03307 ->getFrameLowering() 03308 ->getStackAlignment() >= Alignment) || 03309 RI.canRealignStack(MF); 03310 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 03311 DebugLoc DL = MBB.findDebugLoc(MI); 03312 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) 03313 .addReg(SrcReg, getKillRegState(isKill)); 03314 } 03315 03316 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, 03317 bool isKill, 03318 SmallVectorImpl<MachineOperand> &Addr, 03319 const TargetRegisterClass *RC, 03320 MachineInstr::mmo_iterator MMOBegin, 03321 MachineInstr::mmo_iterator MMOEnd, 03322 SmallVectorImpl<MachineInstr*> &NewMIs) const { 03323 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); 03324 bool isAligned = MMOBegin != MMOEnd && 03325 (*MMOBegin)->getAlignment() >= Alignment; 03326 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 03327 DebugLoc DL; 03328 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 03329 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 03330 MIB.addOperand(Addr[i]); 03331 MIB.addReg(SrcReg, getKillRegState(isKill)); 03332 (*MIB).setMemRefs(MMOBegin, MMOEnd); 03333 NewMIs.push_back(MIB); 03334 } 03335 03336 03337 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 03338 MachineBasicBlock::iterator MI, 03339 unsigned DestReg, int FrameIdx, 03340 const TargetRegisterClass *RC, 03341 const TargetRegisterInfo *TRI) const { 03342 const MachineFunction &MF = *MBB.getParent(); 03343 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); 03344 bool isAligned = (MF.getTarget() 03345 .getSubtargetImpl() 03346 ->getFrameLowering() 03347 ->getStackAlignment() >= Alignment) || 03348 RI.canRealignStack(MF); 03349 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 03350 DebugLoc DL = MBB.findDebugLoc(MI); 03351 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); 03352 } 03353 03354 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 03355 SmallVectorImpl<MachineOperand> &Addr, 03356 const TargetRegisterClass *RC, 03357 MachineInstr::mmo_iterator MMOBegin, 03358 MachineInstr::mmo_iterator MMOEnd, 03359 SmallVectorImpl<MachineInstr*> &NewMIs) const { 03360 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); 03361 bool isAligned = MMOBegin != MMOEnd && 03362 (*MMOBegin)->getAlignment() >= Alignment; 03363 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 03364 DebugLoc DL; 03365 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); 03366 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 03367 MIB.addOperand(Addr[i]); 03368 (*MIB).setMemRefs(MMOBegin, MMOEnd); 03369 NewMIs.push_back(MIB); 03370 } 03371 03372 bool X86InstrInfo:: 03373 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, 03374 int &CmpMask, int &CmpValue) const { 03375 switch (MI->getOpcode()) { 03376 default: break; 03377 case X86::CMP64ri32: 03378 case X86::CMP64ri8: 03379 case X86::CMP32ri: 03380 case X86::CMP32ri8: 03381 case X86::CMP16ri: 03382 case X86::CMP16ri8: 03383 case X86::CMP8ri: 03384 SrcReg = MI->getOperand(0).getReg(); 03385 SrcReg2 = 0; 03386 CmpMask = ~0; 03387 CmpValue = MI->getOperand(1).getImm(); 03388 return true; 03389 // A SUB can be used to perform comparison. 03390 case X86::SUB64rm: 03391 case X86::SUB32rm: 03392 case X86::SUB16rm: 03393 case X86::SUB8rm: 03394 SrcReg = MI->getOperand(1).getReg(); 03395 SrcReg2 = 0; 03396 CmpMask = ~0; 03397 CmpValue = 0; 03398 return true; 03399 case X86::SUB64rr: 03400 case X86::SUB32rr: 03401 case X86::SUB16rr: 03402 case X86::SUB8rr: 03403 SrcReg = MI->getOperand(1).getReg(); 03404 SrcReg2 = MI->getOperand(2).getReg(); 03405 CmpMask = ~0; 03406 CmpValue = 0; 03407 return true; 03408 case X86::SUB64ri32: 03409 case X86::SUB64ri8: 03410 case X86::SUB32ri: 03411 case X86::SUB32ri8: 03412 case X86::SUB16ri: 03413 case X86::SUB16ri8: 03414 case X86::SUB8ri: 03415 SrcReg = MI->getOperand(1).getReg(); 03416 SrcReg2 = 0; 03417 CmpMask = ~0; 03418 CmpValue = MI->getOperand(2).getImm(); 03419 return true; 03420 case X86::CMP64rr: 03421 case X86::CMP32rr: 03422 case X86::CMP16rr: 03423 case X86::CMP8rr: 03424 SrcReg = MI->getOperand(0).getReg(); 03425 SrcReg2 = MI->getOperand(1).getReg(); 03426 CmpMask = ~0; 03427 CmpValue = 0; 03428 return true; 03429 case X86::TEST8rr: 03430 case X86::TEST16rr: 03431 case X86::TEST32rr: 03432 case X86::TEST64rr: 03433 SrcReg = MI->getOperand(0).getReg(); 03434 if (MI->getOperand(1).getReg() != SrcReg) return false; 03435 // Compare against zero. 03436 SrcReg2 = 0; 03437 CmpMask = ~0; 03438 CmpValue = 0; 03439 return true; 03440 } 03441 return false; 03442 } 03443 03444 /// isRedundantFlagInstr - check whether the first instruction, whose only 03445 /// purpose is to update flags, can be made redundant. 03446 /// CMPrr can be made redundant by SUBrr if the operands are the same. 03447 /// This function can be extended later on. 03448 /// SrcReg, SrcRegs: register operands for FlagI. 03449 /// ImmValue: immediate for FlagI if it takes an immediate. 03450 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg, 03451 unsigned SrcReg2, int ImmValue, 03452 MachineInstr *OI) { 03453 if (((FlagI->getOpcode() == X86::CMP64rr && 03454 OI->getOpcode() == X86::SUB64rr) || 03455 (FlagI->getOpcode() == X86::CMP32rr && 03456 OI->getOpcode() == X86::SUB32rr)|| 03457 (FlagI->getOpcode() == X86::CMP16rr && 03458 OI->getOpcode() == X86::SUB16rr)|| 03459 (FlagI->getOpcode() == X86::CMP8rr && 03460 OI->getOpcode() == X86::SUB8rr)) && 03461 ((OI->getOperand(1).getReg() == SrcReg && 03462 OI->getOperand(2).getReg() == SrcReg2) || 03463 (OI->getOperand(1).getReg() == SrcReg2 && 03464 OI->getOperand(2).getReg() == SrcReg))) 03465 return true; 03466 03467 if (((FlagI->getOpcode() == X86::CMP64ri32 && 03468 OI->getOpcode() == X86::SUB64ri32) || 03469 (FlagI->getOpcode() == X86::CMP64ri8 && 03470 OI->getOpcode() == X86::SUB64ri8) || 03471 (FlagI->getOpcode() == X86::CMP32ri && 03472 OI->getOpcode() == X86::SUB32ri) || 03473 (FlagI->getOpcode() == X86::CMP32ri8 && 03474 OI->getOpcode() == X86::SUB32ri8) || 03475 (FlagI->getOpcode() == X86::CMP16ri && 03476 OI->getOpcode() == X86::SUB16ri) || 03477 (FlagI->getOpcode() == X86::CMP16ri8 && 03478 OI->getOpcode() == X86::SUB16ri8) || 03479 (FlagI->getOpcode() == X86::CMP8ri && 03480 OI->getOpcode() == X86::SUB8ri)) && 03481 OI->getOperand(1).getReg() == SrcReg && 03482 OI->getOperand(2).getImm() == ImmValue) 03483 return true; 03484 return false; 03485 } 03486 03487 /// isDefConvertible - check whether the definition can be converted 03488 /// to remove a comparison against zero. 03489 inline static bool isDefConvertible(MachineInstr *MI) { 03490 switch (MI->getOpcode()) { 03491 default: return false; 03492 03493 // The shift instructions only modify ZF if their shift count is non-zero. 03494 // N.B.: The processor truncates the shift count depending on the encoding. 03495 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: 03496 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: 03497 return getTruncatedShiftCount(MI, 2) != 0; 03498 03499 // Some left shift instructions can be turned into LEA instructions but only 03500 // if their flags aren't used. Avoid transforming such instructions. 03501 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ 03502 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 03503 if (isTruncatedShiftCountForLEA(ShAmt)) return false; 03504 return ShAmt != 0; 03505 } 03506 03507 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: 03508 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: 03509 return getTruncatedShiftCount(MI, 3) != 0; 03510 03511 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: 03512 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: 03513 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: 03514 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: 03515 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: 03516 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: 03517 case X86::DEC64_32r: case X86::DEC64_16r: 03518 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: 03519 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: 03520 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: 03521 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: 03522 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: 03523 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: 03524 case X86::INC64_32r: case X86::INC64_16r: 03525 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: 03526 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: 03527 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: 03528 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: 03529 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: 03530 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: 03531 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: 03532 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: 03533 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: 03534 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: 03535 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: 03536 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: 03537 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: 03538 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: 03539 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: 03540 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: 03541 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: 03542 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: 03543 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: 03544 case X86::ADC32ri: case X86::ADC32ri8: 03545 case X86::ADC32rr: case X86::ADC64ri32: 03546 case X86::ADC64ri8: case X86::ADC64rr: 03547 case X86::SBB32ri: case X86::SBB32ri8: 03548 case X86::SBB32rr: case X86::SBB64ri32: 03549 case X86::SBB64ri8: case X86::SBB64rr: 03550 case X86::ANDN32rr: case X86::ANDN32rm: 03551 case X86::ANDN64rr: case X86::ANDN64rm: 03552 case X86::BEXTR32rr: case X86::BEXTR64rr: 03553 case X86::BEXTR32rm: case X86::BEXTR64rm: 03554 case X86::BLSI32rr: case X86::BLSI32rm: 03555 case X86::BLSI64rr: case X86::BLSI64rm: 03556 case X86::BLSMSK32rr:case X86::BLSMSK32rm: 03557 case X86::BLSMSK64rr:case X86::BLSMSK64rm: 03558 case X86::BLSR32rr: case X86::BLSR32rm: 03559 case X86::BLSR64rr: case X86::BLSR64rm: 03560 case X86::BZHI32rr: case X86::BZHI32rm: 03561 case X86::BZHI64rr: case X86::BZHI64rm: 03562 case X86::LZCNT16rr: case X86::LZCNT16rm: 03563 case X86::LZCNT32rr: case X86::LZCNT32rm: 03564 case X86::LZCNT64rr: case X86::LZCNT64rm: 03565 case X86::POPCNT16rr:case X86::POPCNT16rm: 03566 case X86::POPCNT32rr:case X86::POPCNT32rm: 03567 case X86::POPCNT64rr:case X86::POPCNT64rm: 03568 case X86::TZCNT16rr: case X86::TZCNT16rm: 03569 case X86::TZCNT32rr: case X86::TZCNT32rm: 03570 case X86::TZCNT64rr: case X86::TZCNT64rm: 03571 return true; 03572 } 03573 } 03574 03575 /// isUseDefConvertible - check whether the use can be converted 03576 /// to remove a comparison against zero. 03577 static X86::CondCode isUseDefConvertible(MachineInstr *MI) { 03578 switch (MI->getOpcode()) { 03579 default: return X86::COND_INVALID; 03580 case X86::LZCNT16rr: case X86::LZCNT16rm: 03581 case X86::LZCNT32rr: case X86::LZCNT32rm: 03582 case X86::LZCNT64rr: case X86::LZCNT64rm: 03583 return X86::COND_B; 03584 case X86::POPCNT16rr:case X86::POPCNT16rm: 03585 case X86::POPCNT32rr:case X86::POPCNT32rm: 03586 case X86::POPCNT64rr:case X86::POPCNT64rm: 03587 return X86::COND_E; 03588 case X86::TZCNT16rr: case X86::TZCNT16rm: 03589 case X86::TZCNT32rr: case X86::TZCNT32rm: 03590 case X86::TZCNT64rr: case X86::TZCNT64rm: 03591 return X86::COND_B; 03592 } 03593 } 03594 03595 /// optimizeCompareInstr - Check if there exists an earlier instruction that 03596 /// operates on the same source operands and sets flags in the same way as 03597 /// Compare; remove Compare if possible. 03598 bool X86InstrInfo:: 03599 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, 03600 int CmpMask, int CmpValue, 03601 const MachineRegisterInfo *MRI) const { 03602 // Check whether we can replace SUB with CMP. 03603 unsigned NewOpcode = 0; 03604 switch (CmpInstr->getOpcode()) { 03605 default: break; 03606 case X86::SUB64ri32: 03607 case X86::SUB64ri8: 03608 case X86::SUB32ri: 03609 case X86::SUB32ri8: 03610 case X86::SUB16ri: 03611 case X86::SUB16ri8: 03612 case X86::SUB8ri: 03613 case X86::SUB64rm: 03614 case X86::SUB32rm: 03615 case X86::SUB16rm: 03616 case X86::SUB8rm: 03617 case X86::SUB64rr: 03618 case X86::SUB32rr: 03619 case X86::SUB16rr: 03620 case X86::SUB8rr: { 03621 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg())) 03622 return false; 03623 // There is no use of the destination register, we can replace SUB with CMP. 03624 switch (CmpInstr->getOpcode()) { 03625 default: llvm_unreachable("Unreachable!"); 03626 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; 03627 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; 03628 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; 03629 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; 03630 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; 03631 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; 03632 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; 03633 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; 03634 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; 03635 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; 03636 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; 03637 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; 03638 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; 03639 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; 03640 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; 03641 } 03642 CmpInstr->setDesc(get(NewOpcode)); 03643 CmpInstr->RemoveOperand(0); 03644 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. 03645 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || 03646 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) 03647 return false; 03648 } 03649 } 03650 03651 // Get the unique definition of SrcReg. 03652 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 03653 if (!MI) return false; 03654 03655 // CmpInstr is the first instruction of the BB. 03656 MachineBasicBlock::iterator I = CmpInstr, Def = MI; 03657 03658 // If we are comparing against zero, check whether we can use MI to update 03659 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. 03660 bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0); 03661 if (IsCmpZero && MI->getParent() != CmpInstr->getParent()) 03662 return false; 03663 03664 // If we have a use of the source register between the def and our compare 03665 // instruction we can eliminate the compare iff the use sets EFLAGS in the 03666 // right way. 03667 bool ShouldUpdateCC = false; 03668 X86::CondCode NewCC = X86::COND_INVALID; 03669 if (IsCmpZero && !isDefConvertible(MI)) { 03670 // Scan forward from the use until we hit the use we're looking for or the 03671 // compare instruction. 03672 for (MachineBasicBlock::iterator J = MI;; ++J) { 03673 // Do we have a convertible instruction? 03674 NewCC = isUseDefConvertible(J); 03675 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && 03676 J->getOperand(1).getReg() == SrcReg) { 03677 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); 03678 ShouldUpdateCC = true; // Update CC later on. 03679 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going 03680 // with the new def. 03681 MI = Def = J; 03682 break; 03683 } 03684 03685 if (J == I) 03686 return false; 03687 } 03688 } 03689 03690 // We are searching for an earlier instruction that can make CmpInstr 03691 // redundant and that instruction will be saved in Sub. 03692 MachineInstr *Sub = nullptr; 03693 const TargetRegisterInfo *TRI = &getRegisterInfo(); 03694 03695 // We iterate backward, starting from the instruction before CmpInstr and 03696 // stop when reaching the definition of a source register or done with the BB. 03697 // RI points to the instruction before CmpInstr. 03698 // If the definition is in this basic block, RE points to the definition; 03699 // otherwise, RE is the rend of the basic block. 03700 MachineBasicBlock::reverse_iterator 03701 RI = MachineBasicBlock::reverse_iterator(I), 03702 RE = CmpInstr->getParent() == MI->getParent() ? 03703 MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ : 03704 CmpInstr->getParent()->rend(); 03705 MachineInstr *Movr0Inst = nullptr; 03706 for (; RI != RE; ++RI) { 03707 MachineInstr *Instr = &*RI; 03708 // Check whether CmpInstr can be made redundant by the current instruction. 03709 if (!IsCmpZero && 03710 isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) { 03711 Sub = Instr; 03712 break; 03713 } 03714 03715 if (Instr->modifiesRegister(X86::EFLAGS, TRI) || 03716 Instr->readsRegister(X86::EFLAGS, TRI)) { 03717 // This instruction modifies or uses EFLAGS. 03718 03719 // MOV32r0 etc. are implemented with xor which clobbers condition code. 03720 // They are safe to move up, if the definition to EFLAGS is dead and 03721 // earlier instructions do not read or write EFLAGS. 03722 if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 && 03723 Instr->registerDefIsDead(X86::EFLAGS, TRI)) { 03724 Movr0Inst = Instr; 03725 continue; 03726 } 03727 03728 // We can't remove CmpInstr. 03729 return false; 03730 } 03731 } 03732 03733 // Return false if no candidates exist. 03734 if (!IsCmpZero && !Sub) 03735 return false; 03736 03737 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 03738 Sub->getOperand(2).getReg() == SrcReg); 03739 03740 // Scan forward from the instruction after CmpInstr for uses of EFLAGS. 03741 // It is safe to remove CmpInstr if EFLAGS is redefined or killed. 03742 // If we are done with the basic block, we need to check whether EFLAGS is 03743 // live-out. 03744 bool IsSafe = false; 03745 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate; 03746 MachineBasicBlock::iterator E = CmpInstr->getParent()->end(); 03747 for (++I; I != E; ++I) { 03748 const MachineInstr &Instr = *I; 03749 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); 03750 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); 03751 // We should check the usage if this instruction uses and updates EFLAGS. 03752 if (!UseEFLAGS && ModifyEFLAGS) { 03753 // It is safe to remove CmpInstr if EFLAGS is updated again. 03754 IsSafe = true; 03755 break; 03756 } 03757 if (!UseEFLAGS && !ModifyEFLAGS) 03758 continue; 03759 03760 // EFLAGS is used by this instruction. 03761 X86::CondCode OldCC = X86::COND_INVALID; 03762 bool OpcIsSET = false; 03763 if (IsCmpZero || IsSwapped) { 03764 // We decode the condition code from opcode. 03765 if (Instr.isBranch()) 03766 OldCC = getCondFromBranchOpc(Instr.getOpcode()); 03767 else { 03768 OldCC = getCondFromSETOpc(Instr.getOpcode()); 03769 if (OldCC != X86::COND_INVALID) 03770 OpcIsSET = true; 03771 else 03772 OldCC = X86::getCondFromCMovOpc(Instr.getOpcode()); 03773 } 03774 if (OldCC == X86::COND_INVALID) return false; 03775 } 03776 if (IsCmpZero) { 03777 switch (OldCC) { 03778 default: break; 03779 case X86::COND_A: case X86::COND_AE: 03780 case X86::COND_B: case X86::COND_BE: 03781 case X86::COND_G: case X86::COND_GE: 03782 case X86::COND_L: case X86::COND_LE: 03783 case X86::COND_O: case X86::COND_NO: 03784 // CF and OF are used, we can't perform this optimization. 03785 return false; 03786 } 03787 03788 // If we're updating the condition code check if we have to reverse the 03789 // condition. 03790 if (ShouldUpdateCC) 03791 switch (OldCC) { 03792 default: 03793 return false; 03794 case X86::COND_E: 03795 break; 03796 case X86::COND_NE: 03797 NewCC = GetOppositeBranchCondition(NewCC); 03798 break; 03799 } 03800 } else if (IsSwapped) { 03801 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs 03802 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 03803 // We swap the condition code and synthesize the new opcode. 03804 NewCC = getSwappedCondition(OldCC); 03805 if (NewCC == X86::COND_INVALID) return false; 03806 } 03807 03808 if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) { 03809 // Synthesize the new opcode. 03810 bool HasMemoryOperand = Instr.hasOneMemOperand(); 03811 unsigned NewOpc; 03812 if (Instr.isBranch()) 03813 NewOpc = GetCondBranchFromCond(NewCC); 03814 else if(OpcIsSET) 03815 NewOpc = getSETFromCond(NewCC, HasMemoryOperand); 03816 else { 03817 unsigned DstReg = Instr.getOperand(0).getReg(); 03818 NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(), 03819 HasMemoryOperand); 03820 } 03821 03822 // Push the MachineInstr to OpsToUpdate. 03823 // If it is safe to remove CmpInstr, the condition code of these 03824 // instructions will be modified. 03825 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); 03826 } 03827 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { 03828 // It is safe to remove CmpInstr if EFLAGS is updated again or killed. 03829 IsSafe = true; 03830 break; 03831 } 03832 } 03833 03834 // If EFLAGS is not killed nor re-defined, we should check whether it is 03835 // live-out. If it is live-out, do not optimize. 03836 if ((IsCmpZero || IsSwapped) && !IsSafe) { 03837 MachineBasicBlock *MBB = CmpInstr->getParent(); 03838 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 03839 SE = MBB->succ_end(); SI != SE; ++SI) 03840 if ((*SI)->isLiveIn(X86::EFLAGS)) 03841 return false; 03842 } 03843 03844 // The instruction to be updated is either Sub or MI. 03845 Sub = IsCmpZero ? MI : Sub; 03846 // Move Movr0Inst to the appropriate place before Sub. 03847 if (Movr0Inst) { 03848 // Look backwards until we find a def that doesn't use the current EFLAGS. 03849 Def = Sub; 03850 MachineBasicBlock::reverse_iterator 03851 InsertI = MachineBasicBlock::reverse_iterator(++Def), 03852 InsertE = Sub->getParent()->rend(); 03853 for (; InsertI != InsertE; ++InsertI) { 03854 MachineInstr *Instr = &*InsertI; 03855 if (!Instr->readsRegister(X86::EFLAGS, TRI) && 03856 Instr->modifiesRegister(X86::EFLAGS, TRI)) { 03857 Sub->getParent()->remove(Movr0Inst); 03858 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), 03859 Movr0Inst); 03860 break; 03861 } 03862 } 03863 if (InsertI == InsertE) 03864 return false; 03865 } 03866 03867 // Make sure Sub instruction defines EFLAGS and mark the def live. 03868 unsigned i = 0, e = Sub->getNumOperands(); 03869 for (; i != e; ++i) { 03870 MachineOperand &MO = Sub->getOperand(i); 03871 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { 03872 MO.setIsDead(false); 03873 break; 03874 } 03875 } 03876 assert(i != e && "Unable to locate a def EFLAGS operand"); 03877 03878 CmpInstr->eraseFromParent(); 03879 03880 // Modify the condition code of instructions in OpsToUpdate. 03881 for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++) 03882 OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second)); 03883 return true; 03884 } 03885 03886 /// optimizeLoadInstr - Try to remove the load by folding it to a register 03887 /// operand at the use. We fold the load instructions if load defines a virtual 03888 /// register, the virtual register is used once in the same BB, and the 03889 /// instructions in-between do not load or store, and have no side effects. 03890 MachineInstr* X86InstrInfo:: 03891 optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI, 03892 unsigned &FoldAsLoadDefReg, 03893 MachineInstr *&DefMI) const { 03894 if (FoldAsLoadDefReg == 0) 03895 return nullptr; 03896 // To be conservative, if there exists another load, clear the load candidate. 03897 if (MI->mayLoad()) { 03898 FoldAsLoadDefReg = 0; 03899 return nullptr; 03900 } 03901 03902 // Check whether we can move DefMI here. 03903 DefMI = MRI->getVRegDef(FoldAsLoadDefReg); 03904 assert(DefMI); 03905 bool SawStore = false; 03906 if (!DefMI->isSafeToMove(this, nullptr, SawStore)) 03907 return nullptr; 03908 03909 // We try to commute MI if possible. 03910 unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1; 03911 for (unsigned Idx = 0; Idx < IdxEnd; Idx++) { 03912 // Collect information about virtual register operands of MI. 03913 unsigned SrcOperandId = 0; 03914 bool FoundSrcOperand = false; 03915 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 03916 MachineOperand &MO = MI->getOperand(i); 03917 if (!MO.isReg()) 03918 continue; 03919 unsigned Reg = MO.getReg(); 03920 if (Reg != FoldAsLoadDefReg) 03921 continue; 03922 // Do not fold if we have a subreg use or a def or multiple uses. 03923 if (MO.getSubReg() || MO.isDef() || FoundSrcOperand) 03924 return nullptr; 03925 03926 SrcOperandId = i; 03927 FoundSrcOperand = true; 03928 } 03929 if (!FoundSrcOperand) return nullptr; 03930 03931 // Check whether we can fold the def into SrcOperandId. 03932 SmallVector<unsigned, 8> Ops; 03933 Ops.push_back(SrcOperandId); 03934 MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI); 03935 if (FoldMI) { 03936 FoldAsLoadDefReg = 0; 03937 return FoldMI; 03938 } 03939 03940 if (Idx == 1) { 03941 // MI was changed but it didn't help, commute it back! 03942 commuteInstruction(MI, false); 03943 return nullptr; 03944 } 03945 03946 // Check whether we can commute MI and enable folding. 03947 if (MI->isCommutable()) { 03948 MachineInstr *NewMI = commuteInstruction(MI, false); 03949 // Unable to commute. 03950 if (!NewMI) return nullptr; 03951 if (NewMI != MI) { 03952 // New instruction. It doesn't need to be kept. 03953 NewMI->eraseFromParent(); 03954 return nullptr; 03955 } 03956 } 03957 } 03958 return nullptr; 03959 } 03960 03961 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr 03962 /// instruction with two undef reads of the register being defined. This is 03963 /// used for mapping: 03964 /// %xmm4 = V_SET0 03965 /// to: 03966 /// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef> 03967 /// 03968 static bool Expand2AddrUndef(MachineInstrBuilder &MIB, 03969 const MCInstrDesc &Desc) { 03970 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 03971 unsigned Reg = MIB->getOperand(0).getReg(); 03972 MIB->setDesc(Desc); 03973 03974 // MachineInstr::addOperand() will insert explicit operands before any 03975 // implicit operands. 03976 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 03977 // But we don't trust that. 03978 assert(MIB->getOperand(1).getReg() == Reg && 03979 MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); 03980 return true; 03981 } 03982 03983 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different 03984 // code sequence is needed for other targets. 03985 static void expandLoadStackGuard(MachineInstrBuilder &MIB, 03986 const TargetInstrInfo &TII) { 03987 MachineBasicBlock &MBB = *MIB->getParent(); 03988 DebugLoc DL = MIB->getDebugLoc(); 03989 unsigned Reg = MIB->getOperand(0).getReg(); 03990 const GlobalValue *GV = 03991 cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); 03992 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; 03993 MachineMemOperand *MMO = MBB.getParent()-> 03994 getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8); 03995 MachineBasicBlock::iterator I = MIB; 03996 03997 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) 03998 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) 03999 .addMemOperand(MMO); 04000 MIB->setDebugLoc(DL); 04001 MIB->setDesc(TII.get(X86::MOV64rm)); 04002 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); 04003 } 04004 04005 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 04006 bool HasAVX = Subtarget.hasAVX(); 04007 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); 04008 switch (MI->getOpcode()) { 04009 case X86::MOV32r0: 04010 return Expand2AddrUndef(MIB, get(X86::XOR32rr)); 04011 case X86::SETB_C8r: 04012 return Expand2AddrUndef(MIB, get(X86::SBB8rr)); 04013 case X86::SETB_C16r: 04014 return Expand2AddrUndef(MIB, get(X86::SBB16rr)); 04015 case X86::SETB_C32r: 04016 return Expand2AddrUndef(MIB, get(X86::SBB32rr)); 04017 case X86::SETB_C64r: 04018 return Expand2AddrUndef(MIB, get(X86::SBB64rr)); 04019 case X86::V_SET0: 04020 case X86::FsFLD0SS: 04021 case X86::FsFLD0SD: 04022 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); 04023 case X86::AVX_SET0: 04024 assert(HasAVX && "AVX not supported"); 04025 return Expand2AddrUndef(MIB, get(X86::VXORPSYrr)); 04026 case X86::AVX512_512_SET0: 04027 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 04028 case X86::V_SETALLONES: 04029 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); 04030 case X86::AVX2_SETALLONES: 04031 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); 04032 case X86::TEST8ri_NOREX: 04033 MI->setDesc(get(X86::TEST8ri)); 04034 return true; 04035 case X86::KSET0B: 04036 case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr)); 04037 case X86::KSET1B: 04038 case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr)); 04039 case TargetOpcode::LOAD_STACK_GUARD: 04040 expandLoadStackGuard(MIB, *this); 04041 return true; 04042 } 04043 return false; 04044 } 04045 04046 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 04047 const SmallVectorImpl<MachineOperand> &MOs, 04048 MachineInstr *MI, 04049 const TargetInstrInfo &TII) { 04050 // Create the base instruction with the memory operand as the first part. 04051 // Omit the implicit operands, something BuildMI can't do. 04052 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 04053 MI->getDebugLoc(), true); 04054 MachineInstrBuilder MIB(MF, NewMI); 04055 unsigned NumAddrOps = MOs.size(); 04056 for (unsigned i = 0; i != NumAddrOps; ++i) 04057 MIB.addOperand(MOs[i]); 04058 if (NumAddrOps < 4) // FrameIndex only 04059 addOffset(MIB, 0); 04060 04061 // Loop over the rest of the ri operands, converting them over. 04062 unsigned NumOps = MI->getDesc().getNumOperands()-2; 04063 for (unsigned i = 0; i != NumOps; ++i) { 04064 MachineOperand &MO = MI->getOperand(i+2); 04065 MIB.addOperand(MO); 04066 } 04067 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { 04068 MachineOperand &MO = MI->getOperand(i); 04069 MIB.addOperand(MO); 04070 } 04071 return MIB; 04072 } 04073 04074 static MachineInstr *FuseInst(MachineFunction &MF, 04075 unsigned Opcode, unsigned OpNo, 04076 const SmallVectorImpl<MachineOperand> &MOs, 04077 MachineInstr *MI, const TargetInstrInfo &TII) { 04078 // Omit the implicit operands, something BuildMI can't do. 04079 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 04080 MI->getDebugLoc(), true); 04081 MachineInstrBuilder MIB(MF, NewMI); 04082 04083 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 04084 MachineOperand &MO = MI->getOperand(i); 04085 if (i == OpNo) { 04086 assert(MO.isReg() && "Expected to fold into reg operand!"); 04087 unsigned NumAddrOps = MOs.size(); 04088 for (unsigned i = 0; i != NumAddrOps; ++i) 04089 MIB.addOperand(MOs[i]); 04090 if (NumAddrOps < 4) // FrameIndex only 04091 addOffset(MIB, 0); 04092 } else { 04093 MIB.addOperand(MO); 04094 } 04095 } 04096 return MIB; 04097 } 04098 04099 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 04100 const SmallVectorImpl<MachineOperand> &MOs, 04101 MachineInstr *MI) { 04102 MachineFunction &MF = *MI->getParent()->getParent(); 04103 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); 04104 04105 unsigned NumAddrOps = MOs.size(); 04106 for (unsigned i = 0; i != NumAddrOps; ++i) 04107 MIB.addOperand(MOs[i]); 04108 if (NumAddrOps < 4) // FrameIndex only 04109 addOffset(MIB, 0); 04110 return MIB.addImm(0); 04111 } 04112 04113 MachineInstr* 04114 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 04115 MachineInstr *MI, unsigned i, 04116 const SmallVectorImpl<MachineOperand> &MOs, 04117 unsigned Size, unsigned Align) const { 04118 const DenseMap<unsigned, 04119 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr; 04120 bool isCallRegIndirect = Subtarget.callRegIndirect(); 04121 bool isTwoAddrFold = false; 04122 04123 // Atom favors register form of call. So, we do not fold loads into calls 04124 // when X86Subtarget is Atom. 04125 if (isCallRegIndirect && 04126 (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) { 04127 return nullptr; 04128 } 04129 04130 unsigned NumOps = MI->getDesc().getNumOperands(); 04131 bool isTwoAddr = NumOps > 1 && 04132 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 04133 04134 // FIXME: AsmPrinter doesn't know how to handle 04135 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 04136 if (MI->getOpcode() == X86::ADD32ri && 04137 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 04138 return nullptr; 04139 04140 MachineInstr *NewMI = nullptr; 04141 // Folding a memory location into the two-address part of a two-address 04142 // instruction is different than folding it other places. It requires 04143 // replacing the *two* registers with the memory location. 04144 if (isTwoAddr && NumOps >= 2 && i < 2 && 04145 MI->getOperand(0).isReg() && 04146 MI->getOperand(1).isReg() && 04147 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 04148 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 04149 isTwoAddrFold = true; 04150 } else if (i == 0) { // If operand 0 04151 if (MI->getOpcode() == X86::MOV32r0) { 04152 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); 04153 if (NewMI) 04154 return NewMI; 04155 } 04156 04157 OpcodeTablePtr = &RegOp2MemOpTable0; 04158 } else if (i == 1) { 04159 OpcodeTablePtr = &RegOp2MemOpTable1; 04160 } else if (i == 2) { 04161 OpcodeTablePtr = &RegOp2MemOpTable2; 04162 } else if (i == 3) { 04163 OpcodeTablePtr = &RegOp2MemOpTable3; 04164 } 04165 04166 // If table selected... 04167 if (OpcodeTablePtr) { 04168 // Find the Opcode to fuse 04169 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 04170 OpcodeTablePtr->find(MI->getOpcode()); 04171 if (I != OpcodeTablePtr->end()) { 04172 unsigned Opcode = I->second.first; 04173 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; 04174 if (Align < MinAlign) 04175 return nullptr; 04176 bool NarrowToMOV32rm = false; 04177 if (Size) { 04178 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize(); 04179 if (Size < RCSize) { 04180 // Check if it's safe to fold the load. If the size of the object is 04181 // narrower than the load width, then it's not. 04182 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 04183 return nullptr; 04184 // If this is a 64-bit load, but the spill slot is 32, then we can do 04185 // a 32-bit load which is implicitly zero-extended. This likely is due 04186 // to liveintervalanalysis remat'ing a load from stack slot. 04187 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) 04188 return nullptr; 04189 Opcode = X86::MOV32rm; 04190 NarrowToMOV32rm = true; 04191 } 04192 } 04193 04194 if (isTwoAddrFold) 04195 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); 04196 else 04197 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); 04198 04199 if (NarrowToMOV32rm) { 04200 // If this is the special case where we use a MOV32rm to load a 32-bit 04201 // value and zero-extend the top bits. Change the destination register 04202 // to a 32-bit one. 04203 unsigned DstReg = NewMI->getOperand(0).getReg(); 04204 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 04205 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, 04206 X86::sub_32bit)); 04207 else 04208 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 04209 } 04210 return NewMI; 04211 } 04212 } 04213 04214 // No fusion 04215 if (PrintFailedFusing && !MI->isCopy()) 04216 dbgs() << "We failed to fuse operand " << i << " in " << *MI; 04217 return nullptr; 04218 } 04219 04220 /// hasPartialRegUpdate - Return true for all instructions that only update 04221 /// the first 32 or 64-bits of the destination register and leave the rest 04222 /// unmodified. This can be used to avoid folding loads if the instructions 04223 /// only update part of the destination register, and the non-updated part is 04224 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 04225 /// instructions breaks the partial register dependency and it can improve 04226 /// performance. e.g.: 04227 /// 04228 /// movss (%rdi), %xmm0 04229 /// cvtss2sd %xmm0, %xmm0 04230 /// 04231 /// Instead of 04232 /// cvtss2sd (%rdi), %xmm0 04233 /// 04234 /// FIXME: This should be turned into a TSFlags. 04235 /// 04236 static bool hasPartialRegUpdate(unsigned Opcode) { 04237 switch (Opcode) { 04238 case X86::CVTSI2SSrr: 04239 case X86::CVTSI2SS64rr: 04240 case X86::CVTSI2SDrr: 04241 case X86::CVTSI2SD64rr: 04242 case X86::CVTSD2SSrr: 04243 case X86::Int_CVTSD2SSrr: 04244 case X86::CVTSS2SDrr: 04245 case X86::Int_CVTSS2SDrr: 04246 case X86::RCPSSr: 04247 case X86::RCPSSr_Int: 04248 case X86::ROUNDSDr: 04249 case X86::ROUNDSDr_Int: 04250 case X86::ROUNDSSr: 04251 case X86::ROUNDSSr_Int: 04252 case X86::RSQRTSSr: 04253 case X86::RSQRTSSr_Int: 04254 case X86::SQRTSSr: 04255 case X86::SQRTSSr_Int: 04256 return true; 04257 } 04258 04259 return false; 04260 } 04261 04262 /// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle 04263 /// instructions we would like before a partial register update. 04264 unsigned X86InstrInfo:: 04265 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, 04266 const TargetRegisterInfo *TRI) const { 04267 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode())) 04268 return 0; 04269 04270 // If MI is marked as reading Reg, the partial register update is wanted. 04271 const MachineOperand &MO = MI->getOperand(0); 04272 unsigned Reg = MO.getReg(); 04273 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 04274 if (MO.readsReg() || MI->readsVirtualRegister(Reg)) 04275 return 0; 04276 } else { 04277 if (MI->readsRegister(Reg, TRI)) 04278 return 0; 04279 } 04280 04281 // If any of the preceding 16 instructions are reading Reg, insert a 04282 // dependency breaking instruction. The magic number is based on a few 04283 // Nehalem experiments. 04284 return 16; 04285 } 04286 04287 // Return true for any instruction the copies the high bits of the first source 04288 // operand into the unused high bits of the destination operand. 04289 static bool hasUndefRegUpdate(unsigned Opcode) { 04290 switch (Opcode) { 04291 case X86::VCVTSI2SSrr: 04292 case X86::Int_VCVTSI2SSrr: 04293 case X86::VCVTSI2SS64rr: 04294 case X86::Int_VCVTSI2SS64rr: 04295 case X86::VCVTSI2SDrr: 04296 case X86::Int_VCVTSI2SDrr: 04297 case X86::VCVTSI2SD64rr: 04298 case X86::Int_VCVTSI2SD64rr: 04299 case X86::VCVTSD2SSrr: 04300 case X86::Int_VCVTSD2SSrr: 04301 case X86::VCVTSS2SDrr: 04302 case X86::Int_VCVTSS2SDrr: 04303 case X86::VRCPSSr: 04304 case X86::VROUNDSDr: 04305 case X86::VROUNDSDr_Int: 04306 case X86::VROUNDSSr: 04307 case X86::VROUNDSSr_Int: 04308 case X86::VRSQRTSSr: 04309 case X86::VSQRTSSr: 04310 04311 // AVX-512 04312 case X86::VCVTSD2SSZrr: 04313 case X86::VCVTSS2SDZrr: 04314 return true; 04315 } 04316 04317 return false; 04318 } 04319 04320 /// Inform the ExeDepsFix pass how many idle instructions we would like before 04321 /// certain undef register reads. 04322 /// 04323 /// This catches the VCVTSI2SD family of instructions: 04324 /// 04325 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14 04326 /// 04327 /// We should to be careful *not* to catch VXOR idioms which are presumably 04328 /// handled specially in the pipeline: 04329 /// 04330 /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1 04331 /// 04332 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the 04333 /// high bits that are passed-through are not live. 04334 unsigned X86InstrInfo:: 04335 getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum, 04336 const TargetRegisterInfo *TRI) const { 04337 if (!hasUndefRegUpdate(MI->getOpcode())) 04338 return 0; 04339 04340 // Set the OpNum parameter to the first source operand. 04341 OpNum = 1; 04342 04343 const MachineOperand &MO = MI->getOperand(OpNum); 04344 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 04345 // Use the same magic number as getPartialRegUpdateClearance. 04346 return 16; 04347 } 04348 return 0; 04349 } 04350 04351 void X86InstrInfo:: 04352 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, 04353 const TargetRegisterInfo *TRI) const { 04354 unsigned Reg = MI->getOperand(OpNum).getReg(); 04355 // If MI kills this register, the false dependence is already broken. 04356 if (MI->killsRegister(Reg, TRI)) 04357 return; 04358 if (X86::VR128RegClass.contains(Reg)) { 04359 // These instructions are all floating point domain, so xorps is the best 04360 // choice. 04361 bool HasAVX = Subtarget.hasAVX(); 04362 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr; 04363 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg) 04364 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 04365 } else if (X86::VR256RegClass.contains(Reg)) { 04366 // Use vxorps to clear the full ymm register. 04367 // It wants to read and write the xmm sub-register. 04368 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); 04369 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg) 04370 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef) 04371 .addReg(Reg, RegState::ImplicitDefine); 04372 } else 04373 return; 04374 MI->addRegisterKilled(Reg, TRI, true); 04375 } 04376 04377 MachineInstr* 04378 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, 04379 const SmallVectorImpl<unsigned> &Ops, 04380 int FrameIndex) const { 04381 // Check switch flag 04382 if (NoFusing) return nullptr; 04383 04384 // Unless optimizing for size, don't fold to avoid partial 04385 // register update stalls 04386 if (!MF.getFunction()->getAttributes(). 04387 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && 04388 hasPartialRegUpdate(MI->getOpcode())) 04389 return nullptr; 04390 04391 const MachineFrameInfo *MFI = MF.getFrameInfo(); 04392 unsigned Size = MFI->getObjectSize(FrameIndex); 04393 unsigned Alignment = MFI->getObjectAlignment(FrameIndex); 04394 // If the function stack isn't realigned we don't want to fold instructions 04395 // that need increased alignment. 04396 if (!RI.needsStackRealignment(MF)) 04397 Alignment = std::min(Alignment, MF.getTarget() 04398 .getSubtargetImpl() 04399 ->getFrameLowering() 04400 ->getStackAlignment()); 04401 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 04402 unsigned NewOpc = 0; 04403 unsigned RCSize = 0; 04404 switch (MI->getOpcode()) { 04405 default: return nullptr; 04406 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 04407 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; 04408 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; 04409 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; 04410 } 04411 // Check if it's safe to fold the load. If the size of the object is 04412 // narrower than the load width, then it's not. 04413 if (Size < RCSize) 04414 return nullptr; 04415 // Change to CMPXXri r, 0 first. 04416 MI->setDesc(get(NewOpc)); 04417 MI->getOperand(1).ChangeToImmediate(0); 04418 } else if (Ops.size() != 1) 04419 return nullptr; 04420 04421 SmallVector<MachineOperand,4> MOs; 04422 MOs.push_back(MachineOperand::CreateFI(FrameIndex)); 04423 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); 04424 } 04425 04426 static bool isPartialRegisterLoad(const MachineInstr &LoadMI, 04427 const MachineFunction &MF) { 04428 unsigned Opc = LoadMI.getOpcode(); 04429 unsigned RegSize = 04430 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize(); 04431 04432 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4) 04433 // These instructions only load 32 bits, we can't fold them if the 04434 // destination register is wider than 32 bits (4 bytes). 04435 return true; 04436 04437 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8) 04438 // These instructions only load 64 bits, we can't fold them if the 04439 // destination register is wider than 64 bits (8 bytes). 04440 return true; 04441 04442 return false; 04443 } 04444 04445 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 04446 MachineInstr *MI, 04447 const SmallVectorImpl<unsigned> &Ops, 04448 MachineInstr *LoadMI) const { 04449 // If loading from a FrameIndex, fold directly from the FrameIndex. 04450 unsigned NumOps = LoadMI->getDesc().getNumOperands(); 04451 int FrameIndex; 04452 if (isLoadFromStackSlot(LoadMI, FrameIndex)) { 04453 if (isPartialRegisterLoad(*LoadMI, MF)) 04454 return nullptr; 04455 return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex); 04456 } 04457 04458 // Check switch flag 04459 if (NoFusing) return nullptr; 04460 04461 // Unless optimizing for size, don't fold to avoid partial 04462 // register update stalls 04463 if (!MF.getFunction()->getAttributes(). 04464 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && 04465 hasPartialRegUpdate(MI->getOpcode())) 04466 return nullptr; 04467 04468 // Determine the alignment of the load. 04469 unsigned Alignment = 0; 04470 if (LoadMI->hasOneMemOperand()) 04471 Alignment = (*LoadMI->memoperands_begin())->getAlignment(); 04472 else 04473 switch (LoadMI->getOpcode()) { 04474 case X86::AVX2_SETALLONES: 04475 case X86::AVX_SET0: 04476 Alignment = 32; 04477 break; 04478 case X86::V_SET0: 04479 case X86::V_SETALLONES: 04480 Alignment = 16; 04481 break; 04482 case X86::FsFLD0SD: 04483 Alignment = 8; 04484 break; 04485 case X86::FsFLD0SS: 04486 Alignment = 4; 04487 break; 04488 default: 04489 return nullptr; 04490 } 04491 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 04492 unsigned NewOpc = 0; 04493 switch (MI->getOpcode()) { 04494 default: return nullptr; 04495 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 04496 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; 04497 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; 04498 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; 04499 } 04500 // Change to CMPXXri r, 0 first. 04501 MI->setDesc(get(NewOpc)); 04502 MI->getOperand(1).ChangeToImmediate(0); 04503 } else if (Ops.size() != 1) 04504 return nullptr; 04505 04506 // Make sure the subregisters match. 04507 // Otherwise we risk changing the size of the load. 04508 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) 04509 return nullptr; 04510 04511 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 04512 switch (LoadMI->getOpcode()) { 04513 case X86::V_SET0: 04514 case X86::V_SETALLONES: 04515 case X86::AVX2_SETALLONES: 04516 case X86::AVX_SET0: 04517 case X86::FsFLD0SD: 04518 case X86::FsFLD0SS: { 04519 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 04520 // Create a constant-pool entry and operands to load from it. 04521 04522 // Medium and large mode can't fold loads this way. 04523 if (MF.getTarget().getCodeModel() != CodeModel::Small && 04524 MF.getTarget().getCodeModel() != CodeModel::Kernel) 04525 return nullptr; 04526 04527 // x86-32 PIC requires a PIC base register for constant pools. 04528 unsigned PICBase = 0; 04529 if (MF.getTarget().getRelocationModel() == Reloc::PIC_) { 04530 if (Subtarget.is64Bit()) 04531 PICBase = X86::RIP; 04532 else 04533 // FIXME: PICBase = getGlobalBaseReg(&MF); 04534 // This doesn't work for several reasons. 04535 // 1. GlobalBaseReg may have been spilled. 04536 // 2. It may not be live at MI. 04537 return nullptr; 04538 } 04539 04540 // Create a constant-pool entry. 04541 MachineConstantPool &MCP = *MF.getConstantPool(); 04542 Type *Ty; 04543 unsigned Opc = LoadMI->getOpcode(); 04544 if (Opc == X86::FsFLD0SS) 04545 Ty = Type::getFloatTy(MF.getFunction()->getContext()); 04546 else if (Opc == X86::FsFLD0SD) 04547 Ty = Type::getDoubleTy(MF.getFunction()->getContext()); 04548 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0) 04549 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8); 04550 else 04551 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); 04552 04553 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES); 04554 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : 04555 Constant::getNullValue(Ty); 04556 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 04557 04558 // Create operands to load from the constant pool entry. 04559 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 04560 MOs.push_back(MachineOperand::CreateImm(1)); 04561 MOs.push_back(MachineOperand::CreateReg(0, false)); 04562 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 04563 MOs.push_back(MachineOperand::CreateReg(0, false)); 04564 break; 04565 } 04566 default: { 04567 if (isPartialRegisterLoad(*LoadMI, MF)) 04568 return nullptr; 04569 04570 // Folding a normal load. Just copy the load's address operands. 04571 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 04572 MOs.push_back(LoadMI->getOperand(i)); 04573 break; 04574 } 04575 } 04576 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); 04577 } 04578 04579 04580 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, 04581 const SmallVectorImpl<unsigned> &Ops) const { 04582 // Check switch flag 04583 if (NoFusing) return 0; 04584 04585 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 04586 switch (MI->getOpcode()) { 04587 default: return false; 04588 case X86::TEST8rr: 04589 case X86::TEST16rr: 04590 case X86::TEST32rr: 04591 case X86::TEST64rr: 04592 return true; 04593 case X86::ADD32ri: 04594 // FIXME: AsmPrinter doesn't know how to handle 04595 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 04596 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 04597 return false; 04598 break; 04599 } 04600 } 04601 04602 if (Ops.size() != 1) 04603 return false; 04604 04605 unsigned OpNum = Ops[0]; 04606 unsigned Opc = MI->getOpcode(); 04607 unsigned NumOps = MI->getDesc().getNumOperands(); 04608 bool isTwoAddr = NumOps > 1 && 04609 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 04610 04611 // Folding a memory location into the two-address part of a two-address 04612 // instruction is different than folding it other places. It requires 04613 // replacing the *two* registers with the memory location. 04614 const DenseMap<unsigned, 04615 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr; 04616 if (isTwoAddr && NumOps >= 2 && OpNum < 2) { 04617 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 04618 } else if (OpNum == 0) { // If operand 0 04619 if (Opc == X86::MOV32r0) 04620 return true; 04621 04622 OpcodeTablePtr = &RegOp2MemOpTable0; 04623 } else if (OpNum == 1) { 04624 OpcodeTablePtr = &RegOp2MemOpTable1; 04625 } else if (OpNum == 2) { 04626 OpcodeTablePtr = &RegOp2MemOpTable2; 04627 } else if (OpNum == 3) { 04628 OpcodeTablePtr = &RegOp2MemOpTable3; 04629 } 04630 04631 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) 04632 return true; 04633 return TargetInstrInfo::canFoldMemoryOperand(MI, Ops); 04634 } 04635 04636 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 04637 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 04638 SmallVectorImpl<MachineInstr*> &NewMIs) const { 04639 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 04640 MemOp2RegOpTable.find(MI->getOpcode()); 04641 if (I == MemOp2RegOpTable.end()) 04642 return false; 04643 unsigned Opc = I->second.first; 04644 unsigned Index = I->second.second & TB_INDEX_MASK; 04645 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 04646 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 04647 if (UnfoldLoad && !FoldedLoad) 04648 return false; 04649 UnfoldLoad &= FoldedLoad; 04650 if (UnfoldStore && !FoldedStore) 04651 return false; 04652 UnfoldStore &= FoldedStore; 04653 04654 const MCInstrDesc &MCID = get(Opc); 04655 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 04656 if (!MI->hasOneMemOperand() && 04657 RC == &X86::VR128RegClass && 04658 !Subtarget.isUnalignedMemAccessFast()) 04659 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 04660 // conservatively assume the address is unaligned. That's bad for 04661 // performance. 04662 return false; 04663 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 04664 SmallVector<MachineOperand,2> BeforeOps; 04665 SmallVector<MachineOperand,2> AfterOps; 04666 SmallVector<MachineOperand,4> ImpOps; 04667 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 04668 MachineOperand &Op = MI->getOperand(i); 04669 if (i >= Index && i < Index + X86::AddrNumOperands) 04670 AddrOps.push_back(Op); 04671 else if (Op.isReg() && Op.isImplicit()) 04672 ImpOps.push_back(Op); 04673 else if (i < Index) 04674 BeforeOps.push_back(Op); 04675 else if (i > Index) 04676 AfterOps.push_back(Op); 04677 } 04678 04679 // Emit the load instruction. 04680 if (UnfoldLoad) { 04681 std::pair<MachineInstr::mmo_iterator, 04682 MachineInstr::mmo_iterator> MMOs = 04683 MF.extractLoadMemRefs(MI->memoperands_begin(), 04684 MI->memoperands_end()); 04685 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); 04686 if (UnfoldStore) { 04687 // Address operands cannot be marked isKill. 04688 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 04689 MachineOperand &MO = NewMIs[0]->getOperand(i); 04690 if (MO.isReg()) 04691 MO.setIsKill(false); 04692 } 04693 } 04694 } 04695 04696 // Emit the data processing instruction. 04697 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); 04698 MachineInstrBuilder MIB(MF, DataMI); 04699 04700 if (FoldedStore) 04701 MIB.addReg(Reg, RegState::Define); 04702 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) 04703 MIB.addOperand(BeforeOps[i]); 04704 if (FoldedLoad) 04705 MIB.addReg(Reg); 04706 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) 04707 MIB.addOperand(AfterOps[i]); 04708 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { 04709 MachineOperand &MO = ImpOps[i]; 04710 MIB.addReg(MO.getReg(), 04711 getDefRegState(MO.isDef()) | 04712 RegState::Implicit | 04713 getKillRegState(MO.isKill()) | 04714 getDeadRegState(MO.isDead()) | 04715 getUndefRegState(MO.isUndef())); 04716 } 04717 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 04718 switch (DataMI->getOpcode()) { 04719 default: break; 04720 case X86::CMP64ri32: 04721 case X86::CMP64ri8: 04722 case X86::CMP32ri: 04723 case X86::CMP32ri8: 04724 case X86::CMP16ri: 04725 case X86::CMP16ri8: 04726 case X86::CMP8ri: { 04727 MachineOperand &MO0 = DataMI->getOperand(0); 04728 MachineOperand &MO1 = DataMI->getOperand(1); 04729 if (MO1.getImm() == 0) { 04730 unsigned NewOpc; 04731 switch (DataMI->getOpcode()) { 04732 default: llvm_unreachable("Unreachable!"); 04733 case X86::CMP64ri8: 04734 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 04735 case X86::CMP32ri8: 04736 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 04737 case X86::CMP16ri8: 04738 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 04739 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 04740 } 04741 DataMI->setDesc(get(NewOpc)); 04742 MO1.ChangeToRegister(MO0.getReg(), false); 04743 } 04744 } 04745 } 04746 NewMIs.push_back(DataMI); 04747 04748 // Emit the store instruction. 04749 if (UnfoldStore) { 04750 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); 04751 std::pair<MachineInstr::mmo_iterator, 04752 MachineInstr::mmo_iterator> MMOs = 04753 MF.extractStoreMemRefs(MI->memoperands_begin(), 04754 MI->memoperands_end()); 04755 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); 04756 } 04757 04758 return true; 04759 } 04760 04761 bool 04762 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 04763 SmallVectorImpl<SDNode*> &NewNodes) const { 04764 if (!N->isMachineOpcode()) 04765 return false; 04766 04767 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 04768 MemOp2RegOpTable.find(N->getMachineOpcode()); 04769 if (I == MemOp2RegOpTable.end()) 04770 return false; 04771 unsigned Opc = I->second.first; 04772 unsigned Index = I->second.second & TB_INDEX_MASK; 04773 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 04774 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 04775 const MCInstrDesc &MCID = get(Opc); 04776 MachineFunction &MF = DAG.getMachineFunction(); 04777 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 04778 unsigned NumDefs = MCID.NumDefs; 04779 std::vector<SDValue> AddrOps; 04780 std::vector<SDValue> BeforeOps; 04781 std::vector<SDValue> AfterOps; 04782 SDLoc dl(N); 04783 unsigned NumOps = N->getNumOperands(); 04784 for (unsigned i = 0; i != NumOps-1; ++i) { 04785 SDValue Op = N->getOperand(i); 04786 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 04787 AddrOps.push_back(Op); 04788 else if (i < Index-NumDefs) 04789 BeforeOps.push_back(Op); 04790 else if (i > Index-NumDefs) 04791 AfterOps.push_back(Op); 04792 } 04793 SDValue Chain = N->getOperand(NumOps-1); 04794 AddrOps.push_back(Chain); 04795 04796 // Emit the load instruction. 04797 SDNode *Load = nullptr; 04798 if (FoldedLoad) { 04799 EVT VT = *RC->vt_begin(); 04800 std::pair<MachineInstr::mmo_iterator, 04801 MachineInstr::mmo_iterator> MMOs = 04802 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 04803 cast<MachineSDNode>(N)->memoperands_end()); 04804 if (!(*MMOs.first) && 04805 RC == &X86::VR128RegClass && 04806 !Subtarget.isUnalignedMemAccessFast()) 04807 // Do not introduce a slow unaligned load. 04808 return false; 04809 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 04810 bool isAligned = (*MMOs.first) && 04811 (*MMOs.first)->getAlignment() >= Alignment; 04812 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl, 04813 VT, MVT::Other, AddrOps); 04814 NewNodes.push_back(Load); 04815 04816 // Preserve memory reference information. 04817 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); 04818 } 04819 04820 // Emit the data processing instruction. 04821 std::vector<EVT> VTs; 04822 const TargetRegisterClass *DstRC = nullptr; 04823 if (MCID.getNumDefs() > 0) { 04824 DstRC = getRegClass(MCID, 0, &RI, MF); 04825 VTs.push_back(*DstRC->vt_begin()); 04826 } 04827 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 04828 EVT VT = N->getValueType(i); 04829 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 04830 VTs.push_back(VT); 04831 } 04832 if (Load) 04833 BeforeOps.push_back(SDValue(Load, 0)); 04834 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); 04835 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); 04836 NewNodes.push_back(NewNode); 04837 04838 // Emit the store instruction. 04839 if (FoldedStore) { 04840 AddrOps.pop_back(); 04841 AddrOps.push_back(SDValue(NewNode, 0)); 04842 AddrOps.push_back(Chain); 04843 std::pair<MachineInstr::mmo_iterator, 04844 MachineInstr::mmo_iterator> MMOs = 04845 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 04846 cast<MachineSDNode>(N)->memoperands_end()); 04847 if (!(*MMOs.first) && 04848 RC == &X86::VR128RegClass && 04849 !Subtarget.isUnalignedMemAccessFast()) 04850 // Do not introduce a slow unaligned store. 04851 return false; 04852 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 04853 bool isAligned = (*MMOs.first) && 04854 (*MMOs.first)->getAlignment() >= Alignment; 04855 SDNode *Store = 04856 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), 04857 dl, MVT::Other, AddrOps); 04858 NewNodes.push_back(Store); 04859 04860 // Preserve memory reference information. 04861 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); 04862 } 04863 04864 return true; 04865 } 04866 04867 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 04868 bool UnfoldLoad, bool UnfoldStore, 04869 unsigned *LoadRegIndex) const { 04870 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 04871 MemOp2RegOpTable.find(Opc); 04872 if (I == MemOp2RegOpTable.end()) 04873 return 0; 04874 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 04875 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 04876 if (UnfoldLoad && !FoldedLoad) 04877 return 0; 04878 if (UnfoldStore && !FoldedStore) 04879 return 0; 04880 if (LoadRegIndex) 04881 *LoadRegIndex = I->second.second & TB_INDEX_MASK; 04882 return I->second.first; 04883 } 04884 04885 bool 04886 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 04887 int64_t &Offset1, int64_t &Offset2) const { 04888 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 04889 return false; 04890 unsigned Opc1 = Load1->getMachineOpcode(); 04891 unsigned Opc2 = Load2->getMachineOpcode(); 04892 switch (Opc1) { 04893 default: return false; 04894 case X86::MOV8rm: 04895 case X86::MOV16rm: 04896 case X86::MOV32rm: 04897 case X86::MOV64rm: 04898 case X86::LD_Fp32m: 04899 case X86::LD_Fp64m: 04900 case X86::LD_Fp80m: 04901 case X86::MOVSSrm: 04902 case X86::MOVSDrm: 04903 case X86::MMX_MOVD64rm: 04904 case X86::MMX_MOVQ64rm: 04905 case X86::FsMOVAPSrm: 04906 case X86::FsMOVAPDrm: 04907 case X86::MOVAPSrm: 04908 case X86::MOVUPSrm: 04909 case X86::MOVAPDrm: 04910 case X86::MOVDQArm: 04911 case X86::MOVDQUrm: 04912 // AVX load instructions 04913 case X86::VMOVSSrm: 04914 case X86::VMOVSDrm: 04915 case X86::FsVMOVAPSrm: 04916 case X86::FsVMOVAPDrm: 04917 case X86::VMOVAPSrm: 04918 case X86::VMOVUPSrm: 04919 case X86::VMOVAPDrm: 04920 case X86::VMOVDQArm: 04921 case X86::VMOVDQUrm: 04922 case X86::VMOVAPSYrm: 04923 case X86::VMOVUPSYrm: 04924 case X86::VMOVAPDYrm: 04925 case X86::VMOVDQAYrm: 04926 case X86::VMOVDQUYrm: 04927 break; 04928 } 04929 switch (Opc2) { 04930 default: return false; 04931 case X86::MOV8rm: 04932 case X86::MOV16rm: 04933 case X86::MOV32rm: 04934 case X86::MOV64rm: 04935 case X86::LD_Fp32m: 04936 case X86::LD_Fp64m: 04937 case X86::LD_Fp80m: 04938 case X86::MOVSSrm: 04939 case X86::MOVSDrm: 04940 case X86::MMX_MOVD64rm: 04941 case X86::MMX_MOVQ64rm: 04942 case X86::FsMOVAPSrm: 04943 case X86::FsMOVAPDrm: 04944 case X86::MOVAPSrm: 04945 case X86::MOVUPSrm: 04946 case X86::MOVAPDrm: 04947 case X86::MOVDQArm: 04948 case X86::MOVDQUrm: 04949 // AVX load instructions 04950 case X86::VMOVSSrm: 04951 case X86::VMOVSDrm: 04952 case X86::FsVMOVAPSrm: 04953 case X86::FsVMOVAPDrm: 04954 case X86::VMOVAPSrm: 04955 case X86::VMOVUPSrm: 04956 case X86::VMOVAPDrm: 04957 case X86::VMOVDQArm: 04958 case X86::VMOVDQUrm: 04959 case X86::VMOVAPSYrm: 04960 case X86::VMOVUPSYrm: 04961 case X86::VMOVAPDYrm: 04962 case X86::VMOVDQAYrm: 04963 case X86::VMOVDQUYrm: 04964 break; 04965 } 04966 04967 // Check if chain operands and base addresses match. 04968 if (Load1->getOperand(0) != Load2->getOperand(0) || 04969 Load1->getOperand(5) != Load2->getOperand(5)) 04970 return false; 04971 // Segment operands should match as well. 04972 if (Load1->getOperand(4) != Load2->getOperand(4)) 04973 return false; 04974 // Scale should be 1, Index should be Reg0. 04975 if (Load1->getOperand(1) == Load2->getOperand(1) && 04976 Load1->getOperand(2) == Load2->getOperand(2)) { 04977 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) 04978 return false; 04979 04980 // Now let's examine the displacements. 04981 if (isa<ConstantSDNode>(Load1->getOperand(3)) && 04982 isa<ConstantSDNode>(Load2->getOperand(3))) { 04983 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); 04984 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); 04985 return true; 04986 } 04987 } 04988 return false; 04989 } 04990 04991 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 04992 int64_t Offset1, int64_t Offset2, 04993 unsigned NumLoads) const { 04994 assert(Offset2 > Offset1); 04995 if ((Offset2 - Offset1) / 8 > 64) 04996 return false; 04997 04998 unsigned Opc1 = Load1->getMachineOpcode(); 04999 unsigned Opc2 = Load2->getMachineOpcode(); 05000 if (Opc1 != Opc2) 05001 return false; // FIXME: overly conservative? 05002 05003 switch (Opc1) { 05004 default: break; 05005 case X86::LD_Fp32m: 05006 case X86::LD_Fp64m: 05007 case X86::LD_Fp80m: 05008 case X86::MMX_MOVD64rm: 05009 case X86::MMX_MOVQ64rm: 05010 return false; 05011 } 05012 05013 EVT VT = Load1->getValueType(0); 05014 switch (VT.getSimpleVT().SimpleTy) { 05015 default: 05016 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 05017 // have 16 of them to play with. 05018 if (Subtarget.is64Bit()) { 05019 if (NumLoads >= 3) 05020 return false; 05021 } else if (NumLoads) { 05022 return false; 05023 } 05024 break; 05025 case MVT::i8: 05026 case MVT::i16: 05027 case MVT::i32: 05028 case MVT::i64: 05029 case MVT::f32: 05030 case MVT::f64: 05031 if (NumLoads) 05032 return false; 05033 break; 05034 } 05035 05036 return true; 05037 } 05038 05039 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First, 05040 MachineInstr *Second) const { 05041 // Check if this processor supports macro-fusion. Since this is a minor 05042 // heuristic, we haven't specifically reserved a feature. hasAVX is a decent 05043 // proxy for SandyBridge+. 05044 if (!Subtarget.hasAVX()) 05045 return false; 05046 05047 enum { 05048 FuseTest, 05049 FuseCmp, 05050 FuseInc 05051 } FuseKind; 05052 05053 switch(Second->getOpcode()) { 05054 default: 05055 return false; 05056 case X86::JE_4: 05057 case X86::JNE_4: 05058 case X86::JL_4: 05059 case X86::JLE_4: 05060 case X86::JG_4: 05061 case X86::JGE_4: 05062 FuseKind = FuseInc; 05063 break; 05064 case X86::JB_4: 05065 case X86::JBE_4: 05066 case X86::JA_4: 05067 case X86::JAE_4: 05068 FuseKind = FuseCmp; 05069 break; 05070 case X86::JS_4: 05071 case X86::JNS_4: 05072 case X86::JP_4: 05073 case X86::JNP_4: 05074 case X86::JO_4: 05075 case X86::JNO_4: 05076 FuseKind = FuseTest; 05077 break; 05078 } 05079 switch (First->getOpcode()) { 05080 default: 05081 return false; 05082 case X86::TEST8rr: 05083 case X86::TEST16rr: 05084 case X86::TEST32rr: 05085 case X86::TEST64rr: 05086 case X86::TEST8ri: 05087 case X86::TEST16ri: 05088 case X86::TEST32ri: 05089 case X86::TEST32i32: 05090 case X86::TEST64i32: 05091 case X86::TEST64ri32: 05092 case X86::TEST8rm: 05093 case X86::TEST16rm: 05094 case X86::TEST32rm: 05095 case X86::TEST64rm: 05096 case X86::TEST8ri_NOREX: 05097 case X86::AND16i16: 05098 case X86::AND16ri: 05099 case X86::AND16ri8: 05100 case X86::AND16rm: 05101 case X86::AND16rr: 05102 case X86::AND32i32: 05103 case X86::AND32ri: 05104 case X86::AND32ri8: 05105 case X86::AND32rm: 05106 case X86::AND32rr: 05107 case X86::AND64i32: 05108 case X86::AND64ri32: 05109 case X86::AND64ri8: 05110 case X86::AND64rm: 05111 case X86::AND64rr: 05112 case X86::AND8i8: 05113 case X86::AND8ri: 05114 case X86::AND8rm: 05115 case X86::AND8rr: 05116 return true; 05117 case X86::CMP16i16: 05118 case X86::CMP16ri: 05119 case X86::CMP16ri8: 05120 case X86::CMP16rm: 05121 case X86::CMP16rr: 05122 case X86::CMP32i32: 05123 case X86::CMP32ri: 05124 case X86::CMP32ri8: 05125 case X86::CMP32rm: 05126 case X86::CMP32rr: 05127 case X86::CMP64i32: 05128 case X86::CMP64ri32: 05129 case X86::CMP64ri8: 05130 case X86::CMP64rm: 05131 case X86::CMP64rr: 05132 case X86::CMP8i8: 05133 case X86::CMP8ri: 05134 case X86::CMP8rm: 05135 case X86::CMP8rr: 05136 case X86::ADD16i16: 05137 case X86::ADD16ri: 05138 case X86::ADD16ri8: 05139 case X86::ADD16ri8_DB: 05140 case X86::ADD16ri_DB: 05141 case X86::ADD16rm: 05142 case X86::ADD16rr: 05143 case X86::ADD16rr_DB: 05144 case X86::ADD32i32: 05145 case X86::ADD32ri: 05146 case X86::ADD32ri8: 05147 case X86::ADD32ri8_DB: 05148 case X86::ADD32ri_DB: 05149 case X86::ADD32rm: 05150 case X86::ADD32rr: 05151 case X86::ADD32rr_DB: 05152 case X86::ADD64i32: 05153 case X86::ADD64ri32: 05154 case X86::ADD64ri32_DB: 05155 case X86::ADD64ri8: 05156 case X86::ADD64ri8_DB: 05157 case X86::ADD64rm: 05158 case X86::ADD64rr: 05159 case X86::ADD64rr_DB: 05160 case X86::ADD8i8: 05161 case X86::ADD8mi: 05162 case X86::ADD8mr: 05163 case X86::ADD8ri: 05164 case X86::ADD8rm: 05165 case X86::ADD8rr: 05166 case X86::SUB16i16: 05167 case X86::SUB16ri: 05168 case X86::SUB16ri8: 05169 case X86::SUB16rm: 05170 case X86::SUB16rr: 05171 case X86::SUB32i32: 05172 case X86::SUB32ri: 05173 case X86::SUB32ri8: 05174 case X86::SUB32rm: 05175 case X86::SUB32rr: 05176 case X86::SUB64i32: 05177 case X86::SUB64ri32: 05178 case X86::SUB64ri8: 05179 case X86::SUB64rm: 05180 case X86::SUB64rr: 05181 case X86::SUB8i8: 05182 case X86::SUB8ri: 05183 case X86::SUB8rm: 05184 case X86::SUB8rr: 05185 return FuseKind == FuseCmp || FuseKind == FuseInc; 05186 case X86::INC16r: 05187 case X86::INC32r: 05188 case X86::INC64_16r: 05189 case X86::INC64_32r: 05190 case X86::INC64r: 05191 case X86::INC8r: 05192 case X86::DEC16r: 05193 case X86::DEC32r: 05194 case X86::DEC64_16r: 05195 case X86::DEC64_32r: 05196 case X86::DEC64r: 05197 case X86::DEC8r: 05198 return FuseKind == FuseInc; 05199 } 05200 } 05201 05202 bool X86InstrInfo:: 05203 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 05204 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 05205 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 05206 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) 05207 return true; 05208 Cond[0].setImm(GetOppositeBranchCondition(CC)); 05209 return false; 05210 } 05211 05212 bool X86InstrInfo:: 05213 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 05214 // FIXME: Return false for x87 stack register classes for now. We can't 05215 // allow any loads of these registers before FpGet_ST0_80. 05216 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || 05217 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); 05218 } 05219 05220 /// getGlobalBaseReg - Return a virtual register initialized with the 05221 /// the global base register value. Output instructions required to 05222 /// initialize the register in the function entry block, if necessary. 05223 /// 05224 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 05225 /// 05226 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 05227 assert(!Subtarget.is64Bit() && 05228 "X86-64 PIC uses RIP relative addressing"); 05229 05230 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 05231 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 05232 if (GlobalBaseReg != 0) 05233 return GlobalBaseReg; 05234 05235 // Create the register. The code to initialize it is inserted 05236 // later, by the CGBR pass (below). 05237 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 05238 GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 05239 X86FI->setGlobalBaseReg(GlobalBaseReg); 05240 return GlobalBaseReg; 05241 } 05242 05243 // These are the replaceable SSE instructions. Some of these have Int variants 05244 // that we don't include here. We don't want to replace instructions selected 05245 // by intrinsics. 05246 static const uint16_t ReplaceableInstrs[][3] = { 05247 //PackedSingle PackedDouble PackedInt 05248 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 05249 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 05250 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 05251 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 05252 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 05253 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 05254 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 05255 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 05256 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 05257 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 05258 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 05259 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 05260 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 05261 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 05262 // AVX 128-bit support 05263 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 05264 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 05265 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 05266 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 05267 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 05268 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 05269 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 05270 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 05271 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 05272 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 05273 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 05274 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 05275 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 05276 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 05277 // AVX 256-bit support 05278 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 05279 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 05280 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 05281 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 05282 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 05283 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr } 05284 }; 05285 05286 static const uint16_t ReplaceableInstrsAVX2[][3] = { 05287 //PackedSingle PackedDouble PackedInt 05288 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, 05289 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, 05290 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, 05291 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, 05292 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, 05293 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, 05294 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, 05295 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, 05296 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, 05297 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, 05298 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, 05299 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, 05300 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, 05301 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, 05302 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, 05303 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, 05304 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, 05305 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, 05306 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, 05307 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm} 05308 }; 05309 05310 // FIXME: Some shuffle and unpack instructions have equivalents in different 05311 // domains, but they require a bit more work than just switching opcodes. 05312 05313 static const uint16_t *lookup(unsigned opcode, unsigned domain) { 05314 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) 05315 if (ReplaceableInstrs[i][domain-1] == opcode) 05316 return ReplaceableInstrs[i]; 05317 return nullptr; 05318 } 05319 05320 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) { 05321 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i) 05322 if (ReplaceableInstrsAVX2[i][domain-1] == opcode) 05323 return ReplaceableInstrsAVX2[i]; 05324 return nullptr; 05325 } 05326 05327 std::pair<uint16_t, uint16_t> 05328 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const { 05329 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 05330 bool hasAVX2 = Subtarget.hasAVX2(); 05331 uint16_t validDomains = 0; 05332 if (domain && lookup(MI->getOpcode(), domain)) 05333 validDomains = 0xe; 05334 else if (domain && lookupAVX2(MI->getOpcode(), domain)) 05335 validDomains = hasAVX2 ? 0xe : 0x6; 05336 return std::make_pair(domain, validDomains); 05337 } 05338 05339 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { 05340 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 05341 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 05342 assert(dom && "Not an SSE instruction"); 05343 const uint16_t *table = lookup(MI->getOpcode(), dom); 05344 if (!table) { // try the other table 05345 assert((Subtarget.hasAVX2() || Domain < 3) && 05346 "256-bit vector operations only available in AVX2"); 05347 table = lookupAVX2(MI->getOpcode(), dom); 05348 } 05349 assert(table && "Cannot change domain"); 05350 MI->setDesc(get(table[Domain-1])); 05351 } 05352 05353 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 05354 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 05355 NopInst.setOpcode(X86::NOOP); 05356 } 05357 05358 void X86InstrInfo::getUnconditionalBranch( 05359 MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const { 05360 Branch.setOpcode(X86::JMP_4); 05361 Branch.addOperand(MCOperand::CreateExpr(BranchTarget)); 05362 } 05363 05364 void X86InstrInfo::getTrap(MCInst &MI) const { 05365 MI.setOpcode(X86::TRAP); 05366 } 05367 05368 bool X86InstrInfo::isHighLatencyDef(int opc) const { 05369 switch (opc) { 05370 default: return false; 05371 case X86::DIVSDrm: 05372 case X86::DIVSDrm_Int: 05373 case X86::DIVSDrr: 05374 case X86::DIVSDrr_Int: 05375 case X86::DIVSSrm: 05376 case X86::DIVSSrm_Int: 05377 case X86::DIVSSrr: 05378 case X86::DIVSSrr_Int: 05379 case X86::SQRTPDm: 05380 case X86::SQRTPDr: 05381 case X86::SQRTPSm: 05382 case X86::SQRTPSr: 05383 case X86::SQRTSDm: 05384 case X86::SQRTSDm_Int: 05385 case X86::SQRTSDr: 05386 case X86::SQRTSDr_Int: 05387 case X86::SQRTSSm: 05388 case X86::SQRTSSm_Int: 05389 case X86::SQRTSSr: 05390 case X86::SQRTSSr_Int: 05391 // AVX instructions with high latency 05392 case X86::VDIVSDrm: 05393 case X86::VDIVSDrm_Int: 05394 case X86::VDIVSDrr: 05395 case X86::VDIVSDrr_Int: 05396 case X86::VDIVSSrm: 05397 case X86::VDIVSSrm_Int: 05398 case X86::VDIVSSrr: 05399 case X86::VDIVSSrr_Int: 05400 case X86::VSQRTPDm: 05401 case X86::VSQRTPDr: 05402 case X86::VSQRTPSm: 05403 case X86::VSQRTPSr: 05404 case X86::VSQRTSDm: 05405 case X86::VSQRTSDm_Int: 05406 case X86::VSQRTSDr: 05407 case X86::VSQRTSSm: 05408 case X86::VSQRTSSm_Int: 05409 case X86::VSQRTSSr: 05410 case X86::VSQRTPDZrm: 05411 case X86::VSQRTPDZrr: 05412 case X86::VSQRTPSZrm: 05413 case X86::VSQRTPSZrr: 05414 case X86::VSQRTSDZm: 05415 case X86::VSQRTSDZm_Int: 05416 case X86::VSQRTSDZr: 05417 case X86::VSQRTSSZm_Int: 05418 case X86::VSQRTSSZr: 05419 case X86::VSQRTSSZm: 05420 case X86::VDIVSDZrm: 05421 case X86::VDIVSDZrr: 05422 case X86::VDIVSSZrm: 05423 case X86::VDIVSSZrr: 05424 05425 case X86::VGATHERQPSZrm: 05426 case X86::VGATHERQPDZrm: 05427 case X86::VGATHERDPDZrm: 05428 case X86::VGATHERDPSZrm: 05429 case X86::VPGATHERQDZrm: 05430 case X86::VPGATHERQQZrm: 05431 case X86::VPGATHERDDZrm: 05432 case X86::VPGATHERDQZrm: 05433 case X86::VSCATTERQPDZmr: 05434 case X86::VSCATTERQPSZmr: 05435 case X86::VSCATTERDPDZmr: 05436 case X86::VSCATTERDPSZmr: 05437 case X86::VPSCATTERQDZmr: 05438 case X86::VPSCATTERQQZmr: 05439 case X86::VPSCATTERDDZmr: 05440 case X86::VPSCATTERDQZmr: 05441 return true; 05442 } 05443 } 05444 05445 bool X86InstrInfo:: 05446 hasHighOperandLatency(const InstrItineraryData *ItinData, 05447 const MachineRegisterInfo *MRI, 05448 const MachineInstr *DefMI, unsigned DefIdx, 05449 const MachineInstr *UseMI, unsigned UseIdx) const { 05450 return isHighLatencyDef(DefMI->getOpcode()); 05451 } 05452 05453 namespace { 05454 /// CGBR - Create Global Base Reg pass. This initializes the PIC 05455 /// global base register for x86-32. 05456 struct CGBR : public MachineFunctionPass { 05457 static char ID; 05458 CGBR() : MachineFunctionPass(ID) {} 05459 05460 bool runOnMachineFunction(MachineFunction &MF) override { 05461 const X86TargetMachine *TM = 05462 static_cast<const X86TargetMachine *>(&MF.getTarget()); 05463 05464 // Don't do anything if this is 64-bit as 64-bit PIC 05465 // uses RIP relative addressing. 05466 if (TM->getSubtarget<X86Subtarget>().is64Bit()) 05467 return false; 05468 05469 // Only emit a global base reg in PIC mode. 05470 if (TM->getRelocationModel() != Reloc::PIC_) 05471 return false; 05472 05473 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 05474 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 05475 05476 // If we didn't need a GlobalBaseReg, don't insert code. 05477 if (GlobalBaseReg == 0) 05478 return false; 05479 05480 // Insert the set of GlobalBaseReg into the first MBB of the function 05481 MachineBasicBlock &FirstMBB = MF.front(); 05482 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 05483 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 05484 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 05485 const X86InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo(); 05486 05487 unsigned PC; 05488 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) 05489 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); 05490 else 05491 PC = GlobalBaseReg; 05492 05493 // Operand of MovePCtoStack is completely ignored by asm printer. It's 05494 // only used in JIT code emission as displacement to pc. 05495 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 05496 05497 // If we're using vanilla 'GOT' PIC style, we should use relative addressing 05498 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 05499 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) { 05500 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register 05501 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 05502 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 05503 X86II::MO_GOT_ABSOLUTE_ADDRESS); 05504 } 05505 05506 return true; 05507 } 05508 05509 const char *getPassName() const override { 05510 return "X86 PIC Global Base Reg Initialization"; 05511 } 05512 05513 void getAnalysisUsage(AnalysisUsage &AU) const override { 05514 AU.setPreservesCFG(); 05515 MachineFunctionPass::getAnalysisUsage(AU); 05516 } 05517 }; 05518 } 05519 05520 char CGBR::ID = 0; 05521 FunctionPass* 05522 llvm::createX86GlobalBaseRegPass() { return new CGBR(); } 05523 05524 namespace { 05525 struct LDTLSCleanup : public MachineFunctionPass { 05526 static char ID; 05527 LDTLSCleanup() : MachineFunctionPass(ID) {} 05528 05529 bool runOnMachineFunction(MachineFunction &MF) override { 05530 X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>(); 05531 if (MFI->getNumLocalDynamicTLSAccesses() < 2) { 05532 // No point folding accesses if there isn't at least two. 05533 return false; 05534 } 05535 05536 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 05537 return VisitNode(DT->getRootNode(), 0); 05538 } 05539 05540 // Visit the dominator subtree rooted at Node in pre-order. 05541 // If TLSBaseAddrReg is non-null, then use that to replace any 05542 // TLS_base_addr instructions. Otherwise, create the register 05543 // when the first such instruction is seen, and then use it 05544 // as we encounter more instructions. 05545 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 05546 MachineBasicBlock *BB = Node->getBlock(); 05547 bool Changed = false; 05548 05549 // Traverse the current block. 05550 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 05551 ++I) { 05552 switch (I->getOpcode()) { 05553 case X86::TLS_base_addr32: 05554 case X86::TLS_base_addr64: 05555 if (TLSBaseAddrReg) 05556 I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg); 05557 else 05558 I = SetRegister(I, &TLSBaseAddrReg); 05559 Changed = true; 05560 break; 05561 default: 05562 break; 05563 } 05564 } 05565 05566 // Visit the children of this block in the dominator tree. 05567 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); 05568 I != E; ++I) { 05569 Changed |= VisitNode(*I, TLSBaseAddrReg); 05570 } 05571 05572 return Changed; 05573 } 05574 05575 // Replace the TLS_base_addr instruction I with a copy from 05576 // TLSBaseAddrReg, returning the new instruction. 05577 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I, 05578 unsigned TLSBaseAddrReg) { 05579 MachineFunction *MF = I->getParent()->getParent(); 05580 const X86TargetMachine *TM = 05581 static_cast<const X86TargetMachine *>(&MF->getTarget()); 05582 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit(); 05583 const X86InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo(); 05584 05585 // Insert a Copy from TLSBaseAddrReg to RAX/EAX. 05586 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(), 05587 TII->get(TargetOpcode::COPY), 05588 is64Bit ? X86::RAX : X86::EAX) 05589 .addReg(TLSBaseAddrReg); 05590 05591 // Erase the TLS_base_addr instruction. 05592 I->eraseFromParent(); 05593 05594 return Copy; 05595 } 05596 05597 // Create a virtal register in *TLSBaseAddrReg, and populate it by 05598 // inserting a copy instruction after I. Returns the new instruction. 05599 MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) { 05600 MachineFunction *MF = I->getParent()->getParent(); 05601 const X86TargetMachine *TM = 05602 static_cast<const X86TargetMachine *>(&MF->getTarget()); 05603 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit(); 05604 const X86InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo(); 05605 05606 // Create a virtual register for the TLS base address. 05607 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 05608 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit 05609 ? &X86::GR64RegClass 05610 : &X86::GR32RegClass); 05611 05612 // Insert a copy from RAX/EAX to TLSBaseAddrReg. 05613 MachineInstr *Next = I->getNextNode(); 05614 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(), 05615 TII->get(TargetOpcode::COPY), 05616 *TLSBaseAddrReg) 05617 .addReg(is64Bit ? X86::RAX : X86::EAX); 05618 05619 return Copy; 05620 } 05621 05622 const char *getPassName() const override { 05623 return "Local Dynamic TLS Access Clean-up"; 05624 } 05625 05626 void getAnalysisUsage(AnalysisUsage &AU) const override { 05627 AU.setPreservesCFG(); 05628 AU.addRequired<MachineDominatorTree>(); 05629 MachineFunctionPass::getAnalysisUsage(AU); 05630 } 05631 }; 05632 } 05633 05634 char LDTLSCleanup::ID = 0; 05635 FunctionPass* 05636 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }