ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltanqg GIF version

Theorem ltanqg 6590
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltanqg ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))

Proof of Theorem ltanqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6538 . 2 Q = ((N × N) / ~Q )
2 breq1 3788 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ))
3 oveq2 5540 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴))
43breq1d 3795 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )))
52, 4bibi12d 233 . 2 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ))))
6 breq2 3789 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q 𝐵))
7 oveq2 5540 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵))
87breq2d 3797 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵)))
96, 8bibi12d 233 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵))))
10 oveq1 5539 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) = (𝐶 +Q 𝐴))
11 oveq1 5539 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵) = (𝐶 +Q 𝐵))
1210, 11breq12d 3798 . . 3 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → (([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵) ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
1312bibi2d 230 . 2 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ((𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵)) ↔ (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))))
14 addclpi 6517 . . . . . 6 ((𝑓N𝑔N) → (𝑓 +N 𝑔) ∈ N)
1514adantl 271 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 +N 𝑔) ∈ N)
16 simp3l 966 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
17 simp1r 963 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
18 mulclpi 6518 . . . . . 6 ((𝑣N𝑦N) → (𝑣 ·N 𝑦) ∈ N)
1916, 17, 18syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑦) ∈ N)
20 simp3r 967 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
21 simp1l 962 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
22 mulclpi 6518 . . . . . 6 ((𝑢N𝑥N) → (𝑢 ·N 𝑥) ∈ N)
2320, 21, 22syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑥) ∈ N)
2415, 19, 23caovcld 5674 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ∈ N)
25 mulclpi 6518 . . . . 5 ((𝑢N𝑦N) → (𝑢 ·N 𝑦) ∈ N)
2620, 17, 25syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑦) ∈ N)
27 mulclpi 6518 . . . . . . 7 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
2827adantl 271 . . . . . 6 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
29 simp2r 965 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
3028, 16, 29caovcld 5674 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑤) ∈ N)
31 simp2l 964 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
32 mulclpi 6518 . . . . . 6 ((𝑢N𝑧N) → (𝑢 ·N 𝑧) ∈ N)
3320, 31, 32syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑧) ∈ N)
3415, 30, 33caovcld 5674 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)) ∈ N)
35 mulclpi 6518 . . . . 5 ((𝑢N𝑤N) → (𝑢 ·N 𝑤) ∈ N)
3620, 29, 35syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑤) ∈ N)
37 ordpipqqs 6564 . . . 4 (((((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ∈ N ∧ (𝑢 ·N 𝑦) ∈ N) ∧ (((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N)) → ([⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
3824, 26, 34, 36, 37syl22anc 1170 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
39 simp3 940 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣N𝑢N))
40 simp1 938 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥N𝑦N))
41 addpipqqs 6560 . . . . 5 (((𝑣N𝑢N) ∧ (𝑥N𝑦N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q )
4239, 40, 41syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q )
43 simp2 939 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧N𝑤N))
44 addpipqqs 6560 . . . . 5 (((𝑣N𝑢N) ∧ (𝑧N𝑤N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q )
4539, 43, 44syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q )
4642, 45breq12d 3798 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ [⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q ))
47 ordpipqqs 6564 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
48473adant3 958 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
49 mulclpi 6518 . . . . . 6 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
5021, 29, 49syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N 𝑤) ∈ N)
51 mulclpi 6518 . . . . . 6 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
5217, 31, 51syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N 𝑧) ∈ N)
53 mulclpi 6518 . . . . . 6 ((𝑢N𝑢N) → (𝑢 ·N 𝑢) ∈ N)
5420, 20, 53syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑢) ∈ N)
55 ltmpig 6529 . . . . 5 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N ∧ (𝑢 ·N 𝑢) ∈ N) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
5650, 52, 54, 55syl3anc 1169 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
57 mulclpi 6518 . . . . . . 7 (((𝑢 ·N 𝑥) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N) → ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) ∈ N)
5823, 36, 57syl2anc 403 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) ∈ N)
59 mulclpi 6518 . . . . . . 7 (((𝑢 ·N 𝑦) ∈ N ∧ (𝑢 ·N 𝑧) ∈ N) → ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ∈ N)
6026, 33, 59syl2anc 403 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ∈ N)
61 mulclpi 6518 . . . . . . 7 (((𝑣 ·N 𝑦) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N) → ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) ∈ N)
6219, 36, 61syl2anc 403 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) ∈ N)
63 ltapig 6528 . . . . . 6 ((((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) ∈ N ∧ ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ∈ N ∧ ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) ∈ N) → (((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ↔ (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))) <N (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))))
6458, 60, 62, 63syl3anc 1169 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ↔ (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))) <N (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))))
65 mulcompig 6521 . . . . . . . 8 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
6665adantl 271 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
67 mulasspig 6522 . . . . . . . 8 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6867adantl 271 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6920, 20, 21, 66, 68, 29, 28caov4d 5705 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) = ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)))
7020, 20, 17, 66, 68, 31, 28caov4d 5705 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧)) = ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))
7169, 70breq12d 3798 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧)) ↔ ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
72 distrpig 6523 . . . . . . . 8 ((𝑓N𝑔NN) → (𝑓 ·N (𝑔 +N )) = ((𝑓 ·N 𝑔) +N (𝑓 ·N )))
7372adantl 271 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → (𝑓 ·N (𝑔 +N )) = ((𝑓 ·N 𝑔) +N (𝑓 ·N )))
7473, 19, 23, 36, 15, 66caovdir2d 5697 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) = (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))))
7573, 26, 30, 33caovdid 5696 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧))) = (((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
7620, 17, 16, 66, 68, 29, 28caov411d 5706 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑤)) = ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)))
7776oveq1d 5547 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))) = (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
7875, 77eqtrd 2113 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧))) = (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
7974, 78breq12d 3798 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧))) ↔ (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))) <N (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))))
8064, 71, 793bitr4d 218 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧)) ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
8148, 56, 803bitrd 212 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
8238, 46, 813bitr4rd 219 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )))
831, 5, 9, 13, 823ecoptocl 6218 1 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  cop 3401   class class class wbr 3785  (class class class)co 5532  [cec 6127  Ncnpi 6462   +N cpli 6463   ·N cmi 6464   <N clti 6465   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472   <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-ltnqqs 6543
This theorem is referenced by:  ltanqi  6592  lt2addnq  6594  ltaddnq  6597  prarloclemlt  6683  prarloclemcalc  6692  addlocprlemgt  6724  addclpr  6727  prmuloclemcalc  6755  distrlem4prl  6774  distrlem4pru  6775  ltexprlemopl  6791  ltexprlemopu  6793  ltexprlemdisj  6796  ltexprlemloc  6797  ltexprlemfl  6799  ltexprlemfu  6801  aptiprleml  6829  aptiprlemu  6830  cauappcvgprlemopl  6836  cauappcvgprlemlol  6837  cauappcvgprlemdisj  6841  cauappcvgprlemloc  6842  cauappcvgprlemladdfu  6844  cauappcvgprlemladdru  6846  cauappcvgprlemladdrl  6847  cauappcvgprlem1  6849  caucvgprlemnkj  6856  caucvgprlemnbj  6857  caucvgprlemm  6858  caucvgprlemopl  6859  caucvgprlemlol  6860  caucvgprlemloc  6865  caucvgprlemladdfu  6867  caucvgprlemladdrl  6868  caucvgprprlemml  6884  caucvgprprlemopl  6887  caucvgprprlemlol  6888
  Copyright terms: Public domain W3C validator