ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzltd GIF version

Theorem frec2uzltd 9405
Description: Less-than relation for 𝐺 (see frec2uz0d 9401). (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
frec2uzltd.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
frec2uzltd (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzltd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzltd.b . 2 (𝜑𝐵 ∈ ω)
2 eleq2 2142 . . . . 5 (𝑧 = ∅ → (𝐴𝑧𝐴 ∈ ∅))
3 fveq2 5198 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
43breq2d 3797 . . . . 5 (𝑧 = ∅ → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘∅)))
52, 4imbi12d 232 . . . 4 (𝑧 = ∅ → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))))
65imbi2d 228 . . 3 (𝑧 = ∅ → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))))
7 eleq2 2142 . . . . 5 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
8 fveq2 5198 . . . . . 6 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
98breq2d 3797 . . . . 5 (𝑧 = 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝑦)))
107, 9imbi12d 232 . . . 4 (𝑧 = 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))))
1110imbi2d 228 . . 3 (𝑧 = 𝑦 → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))))
12 eleq2 2142 . . . . 5 (𝑧 = suc 𝑦 → (𝐴𝑧𝐴 ∈ suc 𝑦))
13 fveq2 5198 . . . . . 6 (𝑧 = suc 𝑦 → (𝐺𝑧) = (𝐺‘suc 𝑦))
1413breq2d 3797 . . . . 5 (𝑧 = suc 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
1512, 14imbi12d 232 . . . 4 (𝑧 = suc 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
1615imbi2d 228 . . 3 (𝑧 = suc 𝑦 → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
17 eleq2 2142 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
18 fveq2 5198 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
1918breq2d 3797 . . . . 5 (𝑧 = 𝐵 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝐵)))
2017, 19imbi12d 232 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
2120imbi2d 228 . . 3 (𝑧 = 𝐵 → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))))
22 noel 3255 . . . . 5 ¬ 𝐴 ∈ ∅
2322pm2.21i 607 . . . 4 (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))
2423a1i 9 . . 3 (𝜑 → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))
25 id 19 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))
26 fveq2 5198 . . . . . . . 8 (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦))
2726a1i 9 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦)))
2825, 27orim12d 732 . . . . . 6 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → ((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
29 elsuc2g 4160 . . . . . . . . 9 (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
3029bicomd 139 . . . . . . . 8 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
3130adantr 270 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
32 frec2uz.1 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
3332adantl 271 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ)
34 frec2uz.2 . . . . . . . . . 10 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
35 simpl 107 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝜑) → 𝑦 ∈ ω)
3633, 34, 35frec2uzsucd 9403 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑦) = ((𝐺𝑦) + 1))
3736breq2d 3797 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
38 frec2uzzd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ω)
3938adantl 271 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝜑) → 𝐴 ∈ ω)
4033, 34, 39frec2uzuzd 9404 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝐴) ∈ (ℤ𝐶))
4133, 34, 35frec2uzuzd 9404 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝑦) ∈ (ℤ𝐶))
42 eluzelz 8628 . . . . . . . . . 10 ((𝐺𝐴) ∈ (ℤ𝐶) → (𝐺𝐴) ∈ ℤ)
43 eluzelz 8628 . . . . . . . . . 10 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
44 zleltp1 8406 . . . . . . . . . 10 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4542, 43, 44syl2an 283 . . . . . . . . 9 (((𝐺𝐴) ∈ (ℤ𝐶) ∧ (𝐺𝑦) ∈ (ℤ𝐶)) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4640, 41, 45syl2anc 403 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4733, 34, 39frec2uzzd 9402 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝐴) ∈ ℤ)
4833, 34, 35frec2uzzd 9402 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝑦) ∈ ℤ)
49 zleloe 8398 . . . . . . . . 9 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
5047, 48, 49syl2anc 403 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
5137, 46, 503bitr2rd 215 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝜑) → (((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦)) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
5231, 51imbi12d 232 . . . . . 6 ((𝑦 ∈ ω ∧ 𝜑) → (((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5328, 52syl5ib 152 . . . . 5 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5453ex 113 . . . 4 (𝑦 ∈ ω → (𝜑 → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
5554a2d 26 . . 3 (𝑦 ∈ ω → ((𝜑 → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))) → (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
566, 11, 16, 21, 24, 55finds 4341 . 2 (𝐵 ∈ ω → (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
571, 56mpcom 36 1 (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433  c0 3251   class class class wbr 3785  cmpt 3839  suc csuc 4120  ωcom 4331  cfv 4922  (class class class)co 5532  freccfrec 6000  1c1 6982   + caddc 6984   < clt 7153  cle 7154  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  frec2uzlt2d  9406  frec2uzf1od  9408
  Copyright terms: Public domain W3C validator