| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 5198 |
. . . . . 6
⊢ (𝑧 = 0 → (𝑅‘𝑧) = (𝑅‘0)) |
| 2 | 1 | fveq2d 5202 |
. . . . 5
⊢ (𝑧 = 0 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) |
| 3 | 2 | eqeq1d 2089 |
. . . 4
⊢ (𝑧 = 0 → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))) |
| 4 | 3 | imbi2d 228 |
. . 3
⊢ (𝑧 = 0 → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))))) |
| 5 | | fveq2 5198 |
. . . . . 6
⊢ (𝑧 = 𝑘 → (𝑅‘𝑧) = (𝑅‘𝑘)) |
| 6 | 5 | fveq2d 5202 |
. . . . 5
⊢ (𝑧 = 𝑘 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘𝑘))) |
| 7 | 6 | eqeq1d 2089 |
. . . 4
⊢ (𝑧 = 𝑘 → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)))) |
| 8 | 7 | imbi2d 228 |
. . 3
⊢ (𝑧 = 𝑘 → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0))))) |
| 9 | | fveq2 5198 |
. . . . . 6
⊢ (𝑧 = (𝑘 + 1) → (𝑅‘𝑧) = (𝑅‘(𝑘 + 1))) |
| 10 | 9 | fveq2d 5202 |
. . . . 5
⊢ (𝑧 = (𝑘 + 1) → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘(𝑘 + 1)))) |
| 11 | 10 | eqeq1d 2089 |
. . . 4
⊢ (𝑧 = (𝑘 + 1) → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))) |
| 12 | 11 | imbi2d 228 |
. . 3
⊢ (𝑧 = (𝑘 + 1) → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))) |
| 13 | | fveq2 5198 |
. . . . . 6
⊢ (𝑧 = 𝐾 → (𝑅‘𝑧) = (𝑅‘𝐾)) |
| 14 | 13 | fveq2d 5202 |
. . . . 5
⊢ (𝑧 = 𝐾 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘𝐾))) |
| 15 | 14 | eqeq1d 2089 |
. . . 4
⊢ (𝑧 = 𝐾 → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0)))) |
| 16 | 15 | imbi2d 228 |
. . 3
⊢ (𝑧 = 𝐾 → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0))))) |
| 17 | | eqidd 2082 |
. . 3
⊢ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))) |
| 18 | | nn0uz 8653 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 19 | | alginv.1 |
. . . . . . . . . 10
⊢ 𝑅 = seq0((𝐹 ∘ 1st ),
(ℕ0 × {𝐴}), 𝑆) |
| 20 | | 0zd 8363 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 0 ∈ ℤ) |
| 21 | | id 19 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆) |
| 22 | | alginv.2 |
. . . . . . . . . . 11
⊢ 𝐹:𝑆⟶𝑆 |
| 23 | 22 | a1i 9 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝐹:𝑆⟶𝑆) |
| 24 | | alginv.s |
. . . . . . . . . . 11
⊢ 𝑆 ∈ 𝑉 |
| 25 | 24 | a1i 9 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝑆 ∈ 𝑉) |
| 26 | 18, 19, 20, 21, 23, 25 | ialgrp1 10428 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) |
| 27 | 26 | fveq2d 5202 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝐹‘(𝑅‘𝑘)))) |
| 28 | 18, 19, 20, 21, 23, 25 | ialgrf 10427 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝑅:ℕ0⟶𝑆) |
| 29 | 28 | ffvelrnda 5323 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘𝑘) ∈ 𝑆) |
| 30 | | fveq2 5198 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑅‘𝑘) → (𝐹‘𝑥) = (𝐹‘(𝑅‘𝑘))) |
| 31 | 30 | fveq2d 5202 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑅‘𝑘) → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘(𝑅‘𝑘)))) |
| 32 | | fveq2 5198 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑅‘𝑘) → (𝐼‘𝑥) = (𝐼‘(𝑅‘𝑘))) |
| 33 | 31, 32 | eqeq12d 2095 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑅‘𝑘) → ((𝐼‘(𝐹‘𝑥)) = (𝐼‘𝑥) ↔ (𝐼‘(𝐹‘(𝑅‘𝑘))) = (𝐼‘(𝑅‘𝑘)))) |
| 34 | | alginv.4 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑆 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘𝑥)) |
| 35 | 33, 34 | vtoclga 2664 |
. . . . . . . . 9
⊢ ((𝑅‘𝑘) ∈ 𝑆 → (𝐼‘(𝐹‘(𝑅‘𝑘))) = (𝐼‘(𝑅‘𝑘))) |
| 36 | 29, 35 | syl 14 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐼‘(𝐹‘(𝑅‘𝑘))) = (𝐼‘(𝑅‘𝑘))) |
| 37 | 27, 36 | eqtrd 2113 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘𝑘))) |
| 38 | 37 | eqeq1d 2089 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)))) |
| 39 | 38 | biimprd 156 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))) |
| 40 | 39 | expcom 114 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝐴 ∈ 𝑆 → ((𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))) |
| 41 | 40 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0))) → (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))) |
| 42 | 4, 8, 12, 16, 17, 41 | nn0ind 8461 |
. 2
⊢ (𝐾 ∈ ℕ0
→ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0)))) |
| 43 | 42 | impcom 123 |
1
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐾 ∈ ℕ0) → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0))) |