ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expo GIF version

Theorem m1expo 10300
Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.)
Assertion
Ref Expression
m1expo ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)

Proof of Theorem m1expo
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 10272 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 oveq2 5540 . . . . . . 7 (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
32eqcoms 2084 . . . . . 6 (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
4 neg1cn 8144 . . . . . . . . . 10 -1 ∈ ℂ
54a1i 9 . . . . . . . . 9 (𝑛 ∈ ℤ → -1 ∈ ℂ)
6 neg1ap0 8148 . . . . . . . . . 10 -1 # 0
76a1i 9 . . . . . . . . 9 (𝑛 ∈ ℤ → -1 # 0)
8 2z 8379 . . . . . . . . . . 11 2 ∈ ℤ
98a1i 9 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℤ)
10 id 19 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
119, 10zmulcld 8475 . . . . . . . . 9 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
125, 7, 11expp1zapd 9614 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1))
13 m1expeven 9523 . . . . . . . . . 10 (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1)
1413oveq1d 5547 . . . . . . . . 9 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1))
154mulid2i 7122 . . . . . . . . 9 (1 · -1) = -1
1614, 15syl6eq 2129 . . . . . . . 8 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1)
1712, 16eqtrd 2113 . . . . . . 7 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1)
1817adantl 271 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (-1↑((2 · 𝑛) + 1)) = -1)
193, 18sylan9eqr 2135 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1)
2019ex 113 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1))
2120rexlimdva 2477 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1))
221, 21sylbid 148 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1))
2322imp 122 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1284  wcel 1433  wrex 2349   class class class wbr 3785  (class class class)co 5532  cc 6979  0cc0 6981  1c1 6982   + caddc 6984   · cmul 6986  -cneg 7280   # cap 7681  2c2 8089  cz 8351  cexp 9475  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-xor 1307  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476  df-dvds 10196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator