ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modaddmodup GIF version

Theorem modaddmodup 9389
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodup ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))

Proof of Theorem modaddmodup
StepHypRef Expression
1 elfzoelz 9157 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℤ)
21adantr 270 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℤ)
3 zmodcl 9346 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℕ0)
43adantl 271 . . . . . . 7 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℕ0)
54nn0zd 8467 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℤ)
62, 5zaddcld 8473 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℤ)
7 zq 8711 . . . . 5 ((𝐵 + (𝐴 mod 𝑀)) ∈ ℤ → (𝐵 + (𝐴 mod 𝑀)) ∈ ℚ)
86, 7syl 14 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℚ)
9 simprr 498 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℕ)
10 nnq 8718 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
119, 10syl 14 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℚ)
129nngt0d 8082 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 0 < 𝑀)
13 elfzole1 9164 . . . . . 6 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵)
1413adantr 270 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵)
159nnred 8052 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℝ)
163nn0red 8342 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℝ)
1716adantl 271 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
181zred 8469 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℝ)
1918adantr 270 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
2015, 17, 19lesubaddd 7642 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2114, 20mpbid 145 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)))
22 elfzolt2 9165 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 < 𝑀)
2322adantr 270 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 < 𝑀)
24 zq 8711 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
2524ad2antrl 473 . . . . . . 7 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐴 ∈ ℚ)
26 modqlt 9335 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) < 𝑀)
2725, 11, 12, 26syl3anc 1169 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) < 𝑀)
2819, 17, 15, 15, 23, 27lt2addd 7667 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀))
299nncnd 8053 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℂ)
30292timesd 8273 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (2 · 𝑀) = (𝑀 + 𝑀))
3128, 30breqtrrd 3811 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
32 q2submod 9387 . . . 4 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) − 𝑀))
338, 11, 12, 21, 31, 32syl32anc 1177 . . 3 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) − 𝑀))
34 zq 8711 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
352, 34syl 14 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℚ)
36 modqadd2mod 9376 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3725, 35, 11, 12, 36syl22anc 1170 . . 3 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3833, 37eqtr3d 2115 . 2 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3938expcom 114 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433   class class class wbr 3785  (class class class)co 5532  cr 6980  0cc0 6981   + caddc 6984   · cmul 6986   < clt 7153  cle 7154  cmin 7279  cn 8039  2c2 8089  0cn0 8288  cz 8351  cq 8704  ..^cfzo 9152   mod cmo 9324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator