ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemaz GIF version

Theorem bezoutlemaz 10392
Description: Lemma for Bézout's identity. Like bezoutlemzz 10391 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemaz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlemaz
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemzz 10391 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
21ancoms 264 . . 3 ((𝐵 ∈ ℕ0𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
32adantll 459 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
4 bezoutlemzz 10391 . . . . 5 ((-𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
54ancoms 264 . . . 4 ((𝐵 ∈ ℕ0 ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
65adantll 459 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
7 simpr 108 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
8 simpll 495 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
98ad2antrr 471 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℤ)
10 dvdsnegb 10212 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
117, 9, 10syl2anc 403 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
1211biimprd 156 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ -𝐴𝑧𝐴))
1312anim1d 329 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧 ∥ -𝐴𝑧𝐵) → (𝑧𝐴𝑧𝐵)))
1413imim2d 53 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1514ralimdva 2429 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
168ad2antrr 471 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℤ)
1716zcnd 8470 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℂ)
18 simpr 108 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℤ)
1918zcnd 8470 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℂ)
20 mulneg12 7501 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2117, 19, 20syl2anc 403 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2221oveq1d 5547 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2322eqeq2d 2092 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2423rexbidv 2369 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
25 znegcl 8382 . . . . . . . . . 10 (𝑡 ∈ ℤ → -𝑡 ∈ ℤ)
26 oveq2 5540 . . . . . . . . . . . . . 14 (𝑥 = -𝑡 → (𝐴 · 𝑥) = (𝐴 · -𝑡))
2726oveq1d 5547 . . . . . . . . . . . . 13 (𝑥 = -𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2827eqeq2d 2092 . . . . . . . . . . . 12 (𝑥 = -𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2928rexbidv 2369 . . . . . . . . . . 11 (𝑥 = -𝑡 → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
3029rspcev 2701 . . . . . . . . . 10 ((-𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3125, 30sylan 277 . . . . . . . . 9 ((𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3231ex 113 . . . . . . . 8 (𝑡 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3332adantl 271 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3424, 33sylbid 148 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3534rexlimdva 2477 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3615, 35anim12d 328 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3736reximdva 2463 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
386, 37mpd 13 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
39 elznn0 8366 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0)))
4039simprbi 269 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
4140adantr 270 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
423, 38, 41mpjaodan 744 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433  wral 2348  wrex 2349   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980   + caddc 6984   · cmul 6986  -cneg 7280  0cn0 8288  cz 8351  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196
This theorem is referenced by:  bezoutlembz  10393
  Copyright terms: Public domain W3C validator