ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembz GIF version

Theorem bezoutlembz 10393
Description: Lemma for Bézout's identity. Like bezoutlemaz 10392 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlembz
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemaz 10392 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
21adantlr 460 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3 bezoutlemaz 10392 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))))
43adantlr 460 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))))
5 simpr 108 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
6 simplr 496 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) → 𝐵 ∈ ℤ)
76ad2antrr 471 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝐵 ∈ ℤ)
8 dvdsnegb 10212 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑧𝐵𝑧 ∥ -𝐵))
95, 7, 8syl2anc 403 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧𝐵𝑧 ∥ -𝐵))
109biimprd 156 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ -𝐵𝑧𝐵))
1110anim2d 330 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧𝐴𝑧 ∥ -𝐵) → (𝑧𝐴𝑧𝐵)))
1211imim2d 53 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1312ralimdva 2429 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
146ad2antrr 471 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐵 ∈ ℤ)
1514zcnd 8470 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐵 ∈ ℂ)
16 simpr 108 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℤ)
1716zcnd 8470 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℂ)
18 mulneg12 7501 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (-𝐵 · 𝑡) = (𝐵 · -𝑡))
1915, 17, 18syl2anc 403 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (-𝐵 · 𝑡) = (𝐵 · -𝑡))
2019oveq2d 5548 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) = ((𝐴 · 𝑥) + (𝐵 · -𝑡)))
2120eqeq2d 2092 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))))
22 znegcl 8382 . . . . . . . . . . 11 (𝑡 ∈ ℤ → -𝑡 ∈ ℤ)
23 oveq2 5540 . . . . . . . . . . . . . 14 (𝑦 = -𝑡 → (𝐵 · 𝑦) = (𝐵 · -𝑡))
2423oveq2d 5548 . . . . . . . . . . . . 13 (𝑦 = -𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · -𝑡)))
2524eqeq2d 2092 . . . . . . . . . . . 12 (𝑦 = -𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))))
2625rspcev 2701 . . . . . . . . . . 11 ((-𝑡 ∈ ℤ ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2722, 26sylan 277 . . . . . . . . . 10 ((𝑡 ∈ ℤ ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2827ex 113 . . . . . . . . 9 (𝑡 ∈ ℤ → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2928adantl 271 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3021, 29sylbid 148 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3130rexlimdva 2477 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3231reximdv 2462 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3313, 32anim12d 328 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3433reximdva 2463 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
354, 34mpd 13 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
36 elznn0 8366 . . . 4 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)))
3736simprbi 269 . . 3 (𝐵 ∈ ℤ → (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0))
3837adantl 271 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0))
392, 35, 38mpjaodan 744 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433  wral 2348  wrex 2349   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980   + caddc 6984   · cmul 6986  -cneg 7280  0cn0 8288  cz 8351  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196
This theorem is referenced by:  bezoutlembi  10394
  Copyright terms: Public domain W3C validator