ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvds GIF version

Theorem pw2dvds 10544
Description: A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvds (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁

Proof of Theorem pw2dvds
StepHypRef Expression
1 id 19 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
2 2nn 8193 . . . 4 2 ∈ ℕ
3 nnnn0 8295 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4 nnexpcl 9489 . . . 4 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
52, 3, 4sylancr 405 . . 3 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ)
6 1zzd 8378 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℤ)
7 2z 8379 . . . . . 6 2 ∈ ℤ
8 zexpcl 9491 . . . . . 6 ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
97, 3, 8sylancr 405 . . . . 5 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℤ)
109, 6zsubcld 8474 . . . 4 (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℤ)
11 nnz 8370 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
12 nnge1 8062 . . . 4 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
13 uzid 8633 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
147, 13ax-mp 7 . . . . . 6 2 ∈ (ℤ‘2)
15 bernneq3 9595 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (2↑𝑁))
1614, 3, 15sylancr 405 . . . . 5 (𝑁 ∈ ℕ → 𝑁 < (2↑𝑁))
17 zltlem1 8408 . . . . . 6 ((𝑁 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (𝑁 < (2↑𝑁) ↔ 𝑁 ≤ ((2↑𝑁) − 1)))
1811, 9, 17syl2anc 403 . . . . 5 (𝑁 ∈ ℕ → (𝑁 < (2↑𝑁) ↔ 𝑁 ≤ ((2↑𝑁) − 1)))
1916, 18mpbid 145 . . . 4 (𝑁 ∈ ℕ → 𝑁 ≤ ((2↑𝑁) − 1))
20 elfz4 9038 . . . 4 (((1 ∈ ℤ ∧ ((2↑𝑁) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁 ≤ ((2↑𝑁) − 1))) → 𝑁 ∈ (1...((2↑𝑁) − 1)))
216, 10, 11, 12, 19, 20syl32anc 1177 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ (1...((2↑𝑁) − 1)))
22 fzm1ndvds 10256 . . 3 (((2↑𝑁) ∈ ℕ ∧ 𝑁 ∈ (1...((2↑𝑁) − 1))) → ¬ (2↑𝑁) ∥ 𝑁)
235, 21, 22syl2anc 403 . 2 (𝑁 ∈ ℕ → ¬ (2↑𝑁) ∥ 𝑁)
24 pw2dvdslemn 10543 . 2 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ¬ (2↑𝑁) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
251, 23, 24mpd3an23 1270 1 (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wcel 1433  wrex 2349   class class class wbr 3785  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984   < clt 7153  cle 7154  cmin 7279  cn 8039  2c2 8089  0cn0 8288  cz 8351  cuz 8619  ...cfz 9029  cexp 9475  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-dvds 10196
This theorem is referenced by:  pw2dvdseu  10546  oddpwdclemdvds  10548  oddpwdclemndvds  10549
  Copyright terms: Public domain W3C validator