ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvalap GIF version

Theorem recvalap 9983
Description: Reciprocal expressed with a real denominator. (Contributed by Jim Kingdon, 13-Aug-2021.)
Assertion
Ref Expression
recvalap ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2)))

Proof of Theorem recvalap
StepHypRef Expression
1 cjcl 9735 . . . . . . 7 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
21adantr 270 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (∗‘𝐴) ∈ ℂ)
3 simpl 107 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐴 ∈ ℂ)
42, 3mulcomd 7140 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((∗‘𝐴) · 𝐴) = (𝐴 · (∗‘𝐴)))
5 absvalsq 9939 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
65adantr 270 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
74, 6eqtr4d 2116 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((∗‘𝐴) · 𝐴) = ((abs‘𝐴)↑2))
8 abscl 9937 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
98adantr 270 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℝ)
109recnd 7147 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℂ)
1110sqcld 9603 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((abs‘𝐴)↑2) ∈ ℂ)
12 cjap0 9794 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 # 0 ↔ (∗‘𝐴) # 0))
1312biimpa 290 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (∗‘𝐴) # 0)
1411, 2, 3, 13divmulapd 7899 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((((abs‘𝐴)↑2) / (∗‘𝐴)) = 𝐴 ↔ ((∗‘𝐴) · 𝐴) = ((abs‘𝐴)↑2)))
157, 14mpbird 165 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (((abs‘𝐴)↑2) / (∗‘𝐴)) = 𝐴)
1615oveq2d 5548 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / (((abs‘𝐴)↑2) / (∗‘𝐴))) = (1 / 𝐴))
17 abs00ap 9948 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
1817biimpar 291 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) # 0)
19 sqap0 9542 . . . . 5 ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) # 0 ↔ (abs‘𝐴) # 0))
2010, 19syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (((abs‘𝐴)↑2) # 0 ↔ (abs‘𝐴) # 0))
2118, 20mpbird 165 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((abs‘𝐴)↑2) # 0)
2211, 2, 21, 13recdivapd 7894 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / (((abs‘𝐴)↑2) / (∗‘𝐴))) = ((∗‘𝐴) / ((abs‘𝐴)↑2)))
2316, 22eqtr3d 2115 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981  1c1 6982   · cmul 6986   # cap 7681   / cdiv 7760  2c2 8089  cexp 9475  ccj 9726  abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator